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The purpose of this guide is to help all those interested in understanding the more
technical aspects of the emerging cybernetic communism. So far, there have been
some introductory and some very advanced writings1 on this topic, with a conspicu-
ous lack of ”bridges” between one and the other. At CibCom, we aspire to transcend
this situation; we want to guide novices who venture into the (obscure at first sight)
mathematical and computer science fundamentals of economic planning without ever
having specialized in it or not having worked on it for some time. The general public
may consult the document when they encounter difficulties in interpreting an alge-
braic idea or expression in any of these texts. It is especially extensive because we have
not wanted to skip any of the explanations that are usually taken for granted in the
treatises on this subject.

In any case, before entering into what brings us here today, it is convenient to re-
member the context that, for almost three centuries, has been the reason for these
investigations.

1 Introduction
The socialist planning of the economy – the flagship of cyber-communism – is one of
the ways of organizing and coordinating production in modern societies, character-
ized by a highly developed technical division of labor. In the face of this, the prevailing
market economy rises antagonistically. It produces and reproduces in the world a his-
torically singular reality.

In capitalist society, characterized by the private ownership of the means of pro-
duction, conscious coordination is non-existent and organization occurs at the atomic
level (in companies). Capitalist planning, in spite of how much it has been technified
in the last decades, occurs only within individual companies and, more importantly,
it is fundamentally oriented towards profit expectations. Between different private
companies, it is no longer that there is no harmonious planning, it is that there is no
planning at all.2 Only a posteriori, and according to the logic of blind and impersonal
market automatism, can the different productive units be coordinated to supply the

1See the very rich literature that the original works of Otto Neurath, Wassily Leontief, Leonid Kan-
toróvich, Oskar Lange, Víktor Glushkov, Nikolay Veduta, Stafford Beer, Paul Cockshott and Allin Cot-
trell, Jan Philipp Dapprich, Spyridon Samothrakis, Tomas Härdin, etc., represent.

2The staunchest defenders of capitalism, the Austrian economists, displaying a palpable straw man,
directly deny the very possibility of a conscious coordination at the social level. From their parameters,
planning (or solving the allocation problem in a socialized economy) would necessarily imply leaving
the role of making all economic decisions in the hands of a single authority. To do so, this authority
would have to be omniscient; that is, it would have to have access to the most detailed economic infor-
mation and know the best use for each and every one of themillions of resources in the economy. Given
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demands of the people. These demands (which are sometimes the most basic human
needs) will be satisfied, or not, exclusively according to the level of income of each per-
son and the availability of goods that each country has in the global supply chain.

Captialist Market Socialist Planning

Coordination Automatic, via competi-
tion

Conscious, through
political institutions

Economic
calculation Monetary In kind

Target Private profit Social needs

Climate con-
straints

Introduced from outside
disrupting the operation
(negative externalities)

Organically applied in
the planning process
itself

Employment
According to the needs of
capital (structural unem-
ployment)

According to indi-
vidual will and social
needs

Political
form

Parliamentarism / Bu-
reaucratic State in charge
of ensuring capital ac-
cumulation / Military
dictatorship

Direct Democracy /
Commune

Table 1: Comparison table between systems.

What the apologists of capitalism sell us as a rational organization of production is
revealed to be radically problematic, with inherently disastrous dynamics for human-
ity and the environment. Many of the features of our economic reality, such as extreme
income inequality and recessions, are necessary consequences of the social relations
of production and thus enduring and essential properties of capitalism, rather than
accidental or transitory. Despite the prognostications of market advocates, all this
continues to occur, along with the immense human suffering they entail.

These dynamics are the source of innumerable political conflicts. Social polariza-
tion becomes more acute during crises, constantly permeating our coexistence. The
inability to exercise social control over atomized economic activity is reflected in the
absolute prostration of the ”liberal democracies” before the designs and needs of cap-

the obvious impossibility of such authority, the Austrians would propose as the only efficient solution
to the allocation problem the decentralized mechanism of the market [1].

2
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Figure 1: Monthly averages of CO2 concentration (in ppm) (red dots) along with the
trend of CO2 (blue line)[3].

ital. All these are sufficient reasons to investigate the possibility of a conscious and
democratic organizational alternative. However, preventing capitalism from under-
mining the planet’s capacity to sustain life sticks out as the greatest challenge of all due
to its urgency.

Our planet has dynamics that allow the renewal of resources essential to sustain any
formof life, but the current production of goods constantly exceeds its biophysical lim-
its. In the long run this system constitutes a danger to the prolongation of human life.
Climate change and resource limitation are just beginning tomanifest themselves. Our
current situation is only the prelude to what is to come: first crises of scarcity, major
difficulties for agriculture in several areas of the planet, increasing emissions of green-
house gases, aridification of entire regions, flooding of others, etc [2]... In addition,
many resources are wasted every year due to the large portion of goods that cannot be
exchanged. This is going to be the greatest global challenge humanity has ever faced
in its short but frenetic history. It is a challenge the market has generated itself but is
unable to address, because the imperious need for growth makes capitalism incapable
of facing it. In the light of this new danger, its behavior is even more irrational and
harmful.

Despite the evidence, economists, politicians, intellectuals, social democrats, liber-
als and other political tendencies have been trying for years to find solutions that some-
howmagically eliminate the negative effects of themarket without changing what they
consider the greatest success of capitalism, namely accumulation. In other words, they
propose to fix the issues of the market without altering its nature. In doing so, they

3
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do not need to think about or accept the difficulties of transforming the economic
basis of society. The momentary advances of the workers’ movement are in full re-
treat with the disarticulation of the so-called ”welfare state”. Unemployment persists
and social crises are the order of the day. Pollution continues to worsen and the en-
ergy transition is not progressing as planned. Capitalist accumulation suffers repeated
constraints. Discontent encourages political forces that erode the institutions funda-
mental to sustaining the reproduction of capital.

We propose to address the root of the problem: we propose the alternative of a
democratic, conscious and rational planning of the economy, to enable us to face these
and other challenges, but also to freely choose our destiny as a society. Could this be a
utopian chimera such as that which the great capitalist media sells us on a daily basis?
Has this not been tried before, with disastrous results? Planning is not an entirely new,
21st century concept. In fact, the labormovement has been considering the option of a
planned economy as an alternative to capitalist disorder since the 19th century. These
ideas can be traced through the different organizational and political expressions of
our class, especially in the Internationals I, II and III, and it was the triumph of the
October Revolution in 1917, which allowed themost ambitious approach to economic
planning in history to be carried out in the Soviet Union.

The Soviet economywas in an extremely precarious situation as a result of a bloody
and destructive 6-year civil war. After a short period of New Economic Policy with
capitalist elements, the context of international isolation and the need for rapid in-
dustrial development led the Soviets to try to rationally organize a national economy
focused on self-sufficiency. This challenge was immense: it was an enormous terri-
torial extension where capitalism had only been partially implemented, with social
relations more typical of feudalism [4]. In the first five-year plan of 1928, the aim was
to transform a predominantly agrarian economy into one with a strong base of heavy
industry. At that stage, Soviet society experienced a rapid growth in its wealth: ”So-
viet national income at constant 1928 prices grew by more than 60 percent” between
1928 and 1933 [4]. Economic planning succeeded in establishing the USSR as a world
power despite its obvious initial backwardness and having to simultaneously repel the
Nazis in what was one of the most destructive invasions in human history. However,
after the significant achievements of that first planning phase, problems would soon
appear in the organization of an increasingly diverse and complex economy, such as
shortages and gaps in production chains, which the USSR would face until its disman-
tling in the 1990s. These were partly due to the deficient planning methods adopted at
the time, owing to a the lack of computer capacity. As a result of the inability to effi-
ciently process economic information by means of electronic calculations, the Soviet
system suffered from the following three problems:

4
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1. As the planning body could not calculate how much direct and indirect labour it
would cost to produce each good, the prices of these goods ended up being fixed
on the basis of subjective criteria (“most basic”, cheapest, “most superfluous”,
most expensive, etc.) [5, 6]. Thus, goods that were relatively difficult to produce
were sold at prices well below their cost, leading to shortages on the consumer
side and mismatches in state accounting. This point is discussed in more detail
in the Appendix A.

2. Planningwas not based on society’s actual demand, but rather on rawproduction
targets (tonnes of coal, iron etc.). In other words, the final goods consumed by
the population were not considered to determine the required amounts of raw
materials, but a base quantity of raw materials was estimated instead, which was
then gradually transformed until the final good finally reached, whenever it was
possible, the final consumer. This led to a huge waste of human and material
resources that ultimately weighed down the Soviets.

3. As a consequence of the above, the use of money as a unit of calculation and
method of payment was retained. This was problematic, not only because, as
shown by [7], [8] and [9], it spontaneously engenders high inequalities and,
therefore, political conflicts incompatible with the real democracy we long for,
but because of a deeper question. What information domonetary expressions or
market prices provide? At most, the relative amount of labor socially necessary
to produce a good and its relative scarcity [10]. Questions such as how pollut-
ing the production of a good is, how long it takes for ecosystems to regenerate
a raw material or the workers’ suffering it causes, are categorised as “negative
externalities”, incurring a systematic loss of information that harms the effective
operation of the system.

The inefficiencies resulting from the lack of non-computerized economic planning
paved the way to the progressive restoration of mercantile dynamics in the USSR. The
multiple achievements of Soviet socialism were gradually dismantled, a process that
began with the ”Kosygin reform” and concluded with the Perestroika, thereby leading
to the destruction of the USSR and the subsequent establishment of nationalist and
neoliberal regimes that today dominate the ex-Soviet republics.

In the current day and age, however, all the aforementioned problems can quite
easily be solved. The study of such problems, together with technological innovations,
have made an unprecedented theorization of economic planning possible, with direct
democracy and calculation in kind emerging as fundamental pillars. Instead of re-
ducing economic rationality to a one-dimensional variable such as monetary profit,
economic accounting in physical units, integrated into some sort of public plebiscite,
makes it possible to organically usemultidimensional criteria such as scientific recom-
mendations (ecology, public health, etc.) and ethico-political values (labour dignity,

5

https://cibcom.org/


cibcom.org

intergenerational justice, international solidarity, etc.) [11, 12]. With that in mind, it
is the aim of this document to act as an introduction to the formal expressions of new
economic coordination techniques.

In particular this article addresses three main topics: matrix computation, opti-
mization and computational complexity. These three topics aim to respectively solve
the problems of logistics (how to ensure that we produce neither more nor less than
what is needed), development (how to update our production in relation to changing
social and technological situations) and feasibility (how to be sure that computations
are performed in a reasonable time and with sufficient approximation).

It should be clarified that, by sticking to the “technical” scope of planning (i.e.,
mathematics and computation), we are intentionally omitting all the equally neces-
sary legal-political requirements for the conscious and democratic organization of the
production of goods and services. This is a broad topic on its own that we plan to ad-
dress in future articles.

Let’s plan!

6
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2 Matrix Theory

The reader has probably wondered at some point which manufacturing processes a
good, for example a cell phone, has to go through until it reaches our home in a func-
tional state. As you can imagine, it is a tremendously complex process; its manufacture
includes everything from energy generation and mineral extraction to the manufac-
ture of the semiconductors and plastics used, among many other things.

Themarket does not directly coordinate all these processes as a whole, however, de-
spite its atomicity, it is capable of linking different production units around the globe
to satisfy an effective demand. The basic mechanisms by which its social metabolism
is regulated are: 1) the discipline exercised by competition between companies and
2) the price system and cash flow. These and the feedback they generate result in a
network of signals and information flows that are capable of indirectly incorporating
social material costs into the monetary cost of goods.

Our proposal aims to overcome these mechanisms and to be as or more effective
in organizing the productive process. Let us place ourselves for a moment in the place
of a committee appointed to coordinate the economy as a whole, within the param-
eters that the citizens have decided. How do these public officials correctly organize
the distribution and production of resources? How can they solve logistical problems
of supply and inventory in such a way as not to generate shortages, in the absence of
competition? For this, it is necessary to be able to understand the relationships be-
tween the different production units in a scientific way.

Consequently, at the very least, it must be possible to compute the social costs of
production of each type of good directly and precisely, not as a result of laws beyond the
conscious control of human beings. To achieve this and capture the social metabolism,
it is now possible to use the so-called “technological matrix”. Thanks to this mathe-
matical object, we will be able to know, in amuchmore rigorous way than in the Soviet
era, the adequate valuation for each good, as well as the amount of resources needed
to produce it. But first, in order to define it, we must explain the concept of the matrix
and its properties.

2.1 BasicOperations or: “What in the world is amatrix and howdo
we deal with it?”

A matrix is nothing more than an ordered, two-dimensional array of numbers, that is,
a set of numbers arranged in rows and columns. Formally, a matrix 𝐴 with 𝑛 rows and

7
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𝑚 columns is defined as

𝐴 :=


𝑎1,1 𝑎1,2 𝑎1,3 · · · 𝑎1,𝑚

𝑎2,1 𝑎2,1 𝑎2,3 · · · 𝑎2,𝑚
...

...
...

. . .
...

𝑎𝑛,1 𝑎𝑛,2 𝑎𝑛,3 · · · 𝑎𝑛,𝑚


,

or in abbreviated form 𝐴 = (𝑎𝑖, 𝑗 )𝑖=1,...𝑛, 𝑗=1,...𝑚 . Note that 𝑎𝑖, 𝑗 is simply the number
occupying the 𝑖-th row and the 𝑗-th column.

In order to know the position of any element in a table, you only need to look up
its row and column. In itself, a matrix does not mean anything, but that does not
mean that we cannot give it a meaning. A matrix with a single row and a single col-
umn can be understood as just an ordinary number. On the other hand, to define a
geographical point on the globe, a single number is not enough, we need at least two
(latitude and longitude), which could be represented by amatrix with one row and two
columns (or with two rows and one column). Another example of using matrices, but
with more rows and columns than before, would be: the information from a catalog
with 20 car models classified by 5 different characteristics (e.g., weight, height, engine
power, number of doors and price); can be gathered in a matrix with 20 rows and 5
columns or with 5 rows and 20 columns, depending on the reader’s choice, there is
no mathematical reason to choose the former over the latter. However, the former is
more common for a catalog.

A very special kind of matrices widely used in our day-to-day life are matrices with
a single row and two columns, because, as mentioned before, they can represent points
on a plane. For example, p = [1, 2] would be, set to a unit of distance, the point on
the plane whose latitude is 1 and whose longitude is 2. Thus the points could be repre-
sented on a map. In general, row matrices are matrices with a single row and column
matrices are matrices with a single column, these types of matrices are refered as row
and column vectors respectively. Another kind of peculiar matrices are those which
have the same number of rows and columns, these are called square matrices, and
have specially important mathematical properties.

Now that we know what is a matrix, lets see what operations can they be involved
in.

2.1.1 Sum of matrices

The first operation one can think of is adding matrices. How can we define this opera-
tion? The following definition of matrix addition requires that both matrices involved
have exactly the same number of rows and columns. Formally, let 𝐴 and 𝐵 be matrices

8
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of the form

𝐴 =


𝑎1,1 𝑎1,2 𝑎1,3 · · · 𝑎1,𝑚

𝑎2,1 𝑎2,2 𝑎2,3 · · · 𝑎2,𝑚
...

...
...

. . .
...

𝑎𝑛,1 𝑎𝑛,2 𝑎𝑛,3 · · · 𝑎𝑛,𝑚


, 𝐵 =


𝑏1,1 𝑏1,2 𝑏1,3 · · · 𝑏1,𝑚

𝑏2,1 𝑏2,2 𝑏2,3 · · · 𝑏2,𝑚
...

...
...

. . .
...

𝑏𝑛,1 𝑏𝑛,2 𝑏𝑛,3 · · · 𝑏𝑛,𝑚


,

then we define the sum matrix of 𝐴 and 𝐵 as

𝐴 + 𝐵 :=


𝑎1,1 + 𝑏1,1 𝑎1,2 + 𝑏1,2 𝑎1,3 + 𝑏1,3 · · · . 𝑎1,𝑚 + 𝑏1,𝑚

𝑎2,1 + 𝑏2,1 𝑎2,2 + 𝑏2,2 𝑎2,3 + 𝑏2,3 · · · 𝑎2,𝑚 + 𝑏2,𝑚
...

...
...

. . .
...

𝑎𝑛,1 + 𝑏𝑛,1 𝑎𝑛,2 + 𝑏𝑛,2 𝑎𝑛,3 + 𝑏𝑛,3 · · · 𝑎𝑛,𝑚 + 𝑏𝑛,𝑚


;

i.e. the sum matrix is the matrix whose element in the 𝑖-th row and 𝑗-th column is the
sum of the respective elements of 𝐴 and 𝐵 occupying that position. For this definition
to work, the matrices have to be the exact same size, since, the sum of matrices of
different size does not yield meaningful results (What would summing a vector with
a matrix even mean?). Summing two (or more) matrices is simply writing a matrix
whose elements are the “cell” to “cell”3 sums of thematrices involved. Note that 𝐴+𝐵 =
𝐵 + 𝐴, i.e., matrix addition is a commutative operation. In an analogous way we can
define subtraction of matrices:

𝐴 − 𝐵 :=


𝑎1,1 − 𝑏1,1 𝑎1,2 − 𝑏1,2 𝑎1,3 − 𝑏1,3 ... 𝑎1,𝑚 − 𝑏1,𝑚

𝑎2,1 − 𝑏2,1 𝑎2,2 − 𝑏2,2 𝑎2,3 − 𝑏2,3 ... 𝑎2,𝑚 − 𝑏2,𝑚
...

...
...

. . .
...

𝑎𝑛,1 − 𝑏𝑛,1 𝑎𝑛,2 − 𝑏𝑛,2 𝑎𝑛,3 − 𝑏𝑛,3 ... 𝑎𝑛,𝑚 − 𝑏𝑛,𝑚


.

A concrete example of this operation would be[
1 −4 3

3.1 9 5

]
+
[
0.5 4 3
0.1 −11 30

]
=

[
1.5 0 6
3.2 −2 35

]
.

3Sometimes, a matrix sometimes is referred to as a table which contain each item inside of a cell.
This specialized is specially common in fields related to computer science.

9
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2.1.2 Matrix scalar multiplication

Let 𝑤 be any real number, then we define the scalar multiplication of a matrix 𝐴 by 𝑤
as:

𝑤𝐴 = 𝐴𝑤 :=


𝑤𝑎1,1 𝑤𝑎1,2 𝑤𝑎1,3 · · · 𝑤𝑎1,𝑚

𝑤𝑎2,1 𝑤𝑎2,2 𝑤𝑎2,3 · · · 𝑤𝑎2,𝑚
...

...
...

. . .
...

𝑤𝑎𝑛,1 𝑤𝑎𝑛,2 𝑤𝑎𝑛,3 · · · 𝑤𝑎𝑛,𝑚


;

i.e. we multiply the contents of each cell by the scalar 𝑤. One could say that, when the
matrix is multiplied by a scalar, which is nomore than a constant number (e.g.,𝑤 = 4),
we are literally “scaling” the whole matrix by that number, hence the name. Note that
since the product of two real numbers is commutative, the scalar multiplication of a
matrix also is.

2.1.3 Matrix multiplication

The next operation between matrices that one can think of is the multiplication or
product ofmatrices. Matrix addition and scalarmultiplication were defined in a “cell”-
by-“cell” fashion, however, matrix multiplication is NOT.4 The reason as to why the
standard definition of matrix multiplication doesn’t follow this rule may not be obvi-
ous at first, however, it is themost useful definition due to its linkswith linear equations
and mappings.

Remember that we are defining operations between matrices, guaranteeing that
these are well defined. Everything is valid as a definition, but, is the usefulness of those
objects and operations defined whats important to mathematicians. For a mathemati-
cian, it makes no sense to question the definitions themselves, they are not proved,
only their consistency and properties are. Before defining the product of matrices in
general, let us define it for particular cases. Let us define the product of a matrix 𝐴
with 𝑛 rows and 𝑚 columns by a column matrix (column vector) 𝑥 with 𝑚 rows;

4Although, there is a matrix multiplication definition that works this way called the Hamadar prod-
uct which is useful in the JPEG algorithm.
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𝐴𝑥 =


𝑎1,1 · · · 𝑎1,𝑚

𝑎2,1 · · · 𝑎2,𝑚
...

. . .
...

𝑎𝑛,1 · · · 𝑎𝑛,𝑚



𝑥1

𝑥2
...

𝑥𝑚


:=



𝑎1,1𝑥1 + 𝑎1,2𝑥2 + 𝑎1,3𝑥3 + · · · + 𝑎1,𝑚𝑥𝑚

𝑎2,1𝑥1 + 𝑎2,2𝑥2 + 𝑎2,3𝑥3 + · · · + 𝑎2,𝑚𝑥𝑚
...

𝑎 𝑗 ,1𝑥1 + 𝑎 𝑗 ,2𝑥2 + 𝑎 𝑗 ,3𝑥3 + · · · + 𝑎 𝑗 ,𝑚𝑥𝑚
...

𝑎𝑛,1𝑥1 + 𝑎𝑛,2𝑥2 + 𝑎𝑛,3𝑥3 + · · · + 𝑎𝑛,𝑚𝑥𝑚


.

Do not panic! The method is very simple; 1) take the first row of the matrix and multi-
ply it by the element-by-element vector and add the result 2) place the result in the first
row of the resulting column vector 3) repeat the operation with the following rows of
the matrix (but placing the result of 1) in the corresponding row of the resulting col-
umn vector).

A concrete example of matrix-vector product would be[
0.1 0.40
0.50 0.25

] [
2
3

]
=

[
0.1 · 2 + 0.40 · 3
0.50 · 2 + 0.25 · 3

]
=

[
1.4
1.75

]
.

From a matrix with 𝑛 rows and 𝑚 columns and a column vector (with exactly 𝑚
rows) we obtain a column vector with 𝑛 rows.

We proceed to definematrixmultiplication in general, of whichmatrix-vectormul-
tiplication is a particular case. Let 𝐴 be a matrix with 𝑛 rows and𝑚 columns and 𝐵 be
a matrix with 𝑚 rows and 𝑝 columns. If we write

𝐴 =


𝑎1,1 𝑎1,2 𝑎1,3 · · · 𝑎1,𝑚

𝑎2,1 𝑎2,2 𝑎2,3 · · · 𝑎2,𝑚
...

...
...

. . .
...

𝑎𝑛,1 𝑎𝑛,2 𝑎𝑛,3 · · · 𝑎𝑛,𝑚


and

𝐵 =


𝑏1,1 𝑏1,2 𝑏1,3 · · · 𝑏1,𝑝

𝑏2,1 𝑏2,2 𝑏2,3 · · · 𝑏2,𝑝
...

...
...

. . .
...

𝑏𝑚,1 𝑏𝑚,2 𝑏𝑚,3 · · · 𝑏𝑚,𝑝


,
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Figure 2: Schematic depiction of the matrix product 𝐴𝐵 of two matrices 𝐴 and 𝐵.

then we define the multiplication of 𝐴 by 𝐵 as the matrix of 𝑛 rows and 𝑝 columns
following

𝐴𝐵 :=


𝑐1,1 𝑐1,2 · · · 𝑐1,𝑝

𝑐2,1 𝑐2,2 · · · 𝑐2,𝑝
...

...
. . .

...

𝑐𝑛,1 𝑐𝑛,2 · · · 𝑐𝑛,𝑝


,

where 𝑐𝑖, 𝑗 = 𝑎𝑖,1𝑏1, 𝑗 + 𝑎𝑖,2𝑏2, 𝑗 + 𝑎𝑖,3𝑏3, 𝑗 + ... + 𝑎𝑖,𝑚𝑏𝑚, 𝑗 for all 𝑖 = 1, ..., 𝑛 and
𝑗 = 1, ...., 𝑝, i.e., the element occupying the 𝑖-th row and 𝑗-th column of the product
matrix is the sum of the element-by-element multiplications of the 𝑖-th row of 𝐴 by
the 𝑗-th row of 𝐵. We note that 1) for this definition to make sense the number of
columns that 𝐴 must have and the number of rows that 𝐵 must have must coincide
and 2) the resulting matrix has the same rows as 𝐴 and the same number of columns
as 𝐵. Consequently, if the number of rows of 𝐴 does not coincide with the number
of columns of 𝐵 then 𝐵𝐴 is not well defined, so the commutative property is not true
in general. However, one might ask in case both 𝐴 and 𝐵 had 𝑛 rows and 𝑛 columns,
could 𝐴𝐵 = 𝐵𝐴? Contrary to the sum of matrices, the answer is negative, in general
matrix multiplication does not commute. Let’s look at a couple of simple examples of
this phenomenon. In the first one we have[

2 −3
7 5

] [
0 10
3 −1

]
=

[
2 · 0 + (−3) · 3 2 · 10 + (−3) · (−1)

7 · 0 + 5 · 3 7 · 10 + 5 · (−1)

]
=

[
−9 23
15 65

]
12
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while[
0 10
3 −1

] [
2 −3
7 5

]
=

[
0 · 2 + 10 · 7 0 · (−3) + 10 · 5

3 · 2 + (−1) · 7 3 · (−3) + (−1) · 5

]
=

[
70 50
−1 −14

]
.

Or another example:[
0 1
0 1

] [
1 1
0 0

]
=

[
0 · 1 + 1 · 0 0 · 1 + 1 · 0
0 · 1 + 1 · 0 0 · 1 + 1 · 0

]
=

[
0 0
0 0

]
;

meanwhile [
1 1
0 0

] [
0 1
0 1

]
=

[
1 · 0 + 1 · 0 1 · 1 + 1 · 1
0 · 0 + 0 · 0 0 · 1 + 0 · 1

]
=

[
0 2
0 0

]
.

2.1.4 Identity matrix and inverse matrix

We define the 𝑛-dimensional identity matrix

𝐼𝑛 :=


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

︸            ︷︷            ︸
𝑛 columns

as the square matrix whose diagonal elements (those occupying the same row as col-
umn, i.e., the elements of the form 𝑎𝑖,𝑖) are ones and all other entries are null. Note that
an identity matrix 𝐼5 verifies that 𝐼x = x for every column vector x, hence its name.

We will say that 𝐶 is the inverse matrix of 𝐴 if it verifies

𝐴𝐶 = 𝐶𝐴 = 𝐼 . (1)

Given a matrix 𝐴 there is, at most, only one matrix that satisfies the former equality.
We call the matrix 𝐴−1 that verifies

𝐴𝐴−1 = 𝐴−1𝐴 = 𝐼

5By 𝐼 we refer to any identity matrix with an arbitrary number of columns.
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the inverse matrix of 𝐴. Indeed, if 𝐶1 and 𝐶2 satisfy (2.1.4) then

𝐶1 = 𝐶1𝐼 = 𝐶1(𝐴𝐶2) = (𝐶1𝐴)𝐶2 = 𝐼𝐶2 = 𝐶2

where we have taken into account that 𝐹 (𝐺𝐻) = (𝐹𝐺)𝐻 for any 𝐹, 𝐺, 𝐻 square
matrices.6 Also, it can be proved that if 𝐴−1 exists then 𝐴 is a square matrix.7 Addi-
tionally, if 𝐴−1 and 𝐵−1 both exist, then (𝐴𝐵)−1 = 𝐵−1𝐴−1.

2.1.5 Transpose

Given a matrix

𝐴 =


𝑎1,1 𝑎1,2 𝑎1,3 ... 𝑎1,𝑚

𝑎2,1 𝑎2,2 𝑎2,3 ... 𝑎2,𝑚
...

...
...

. . .
...

𝑎𝑛,1 𝑎𝑛,2 𝑎𝑛,3 ... 𝑎𝑛,𝑚


,

we define the transpose of the matrix 𝐴 as

𝐴𝑇 =


𝑎1,1 𝑎2,1 𝑎3,1 ... 𝑎𝑚,1

𝑎1,2 𝑎2,2 𝑎3,2 ... 𝑎𝑚,2
...

...
...

. . .
...

𝑎1,𝑛 𝑎2,𝑛 𝑎3,𝑛 ... 𝑎𝑚,𝑛


;

i.e. 𝐴𝑇 is formed by turning rows of the matrix 𝐴 into columns and vice versa. For
example, if

𝐴 =

[
1 1
0 0

]
,

then

𝐴𝑇 =

[
1 0
1 0

]
;

or if
x = [𝑥1, ..., 𝑥𝑚] ,

6This property is called associativity and should be proven. The arithmetic proof is simple but cum-
bersome. Alternatively, you could prove this fact by taking advantage of the fact that a matrix represents
a linear function, and that multiplication as defined before represents the composition of said linear
functions. Since the composition of functions trivially satisfies the associativity, then so does matrix
multiplication [13, Chapter 9].

7In [14] you can consult an elementary algorithm to compute the inverse matrix of 𝐴 (if it exists)
using the Gaussian elimination method used to solve systems of linear equations can be found in the
Section ”Complexity” and its computational complexity is explained and checked.
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then

x𝑇 =


𝑥1
...

𝑥𝑚

 .

2.1.6 Relation between solutions of systems of linear equations and inverse ma-
trices

Before concluding this section let’s look at the relationship that exists between invert-
ible matrices and systems of linear equations with a unique solution.8 Starting with a
particularly simple example, let us consider the following system of linear equations:{

𝑥 + 𝑦 = 1
𝑥 − 𝑦 = 1

(2)

How could we express these relations in a matrix form? This is where the definition of
matrix multiplication comes in handy, we can write (2) as[

1 1
1 −1

] [
𝑥

𝑦

]
=

[
1
1

]
.

Letting 𝐴 =

[
1 1
1 −1

]
, i.e. the matrix whose rows are the coefficients of the system of

linear equations and c = [1, 1]𝑇 it turns out that (2) can be represented as

𝐴

[
𝑥

𝑦

]
= c .

If we solve (2) by adding the first and second equations, we obtain that 2𝑥 = 2, there-
fore, 𝑥 = 1 and 𝑦 = 0 is our solution.

There is another interestingway to solve this problem. First, by applying themethod

described in [14] or in section 4.2 we obtain that 𝐴−1 =

[
1
2

1
2

1
2

−1
2

]
. It turns out that c,

we get 𝐴−1

[
1
1

]
=

[
1
2 + 1

2
1
2 − 1

2

]
=

[
1
0

]
which is the previously obtained solution.9 This

is no coincidence. Let us consider the general case of the phenomenon that has just
8Also known as consistent independent system.
9The more skeptical reader can verify that 𝐴𝐴−1 = 𝐴−1𝐴 = 𝐼 .
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occurred in order to shed some light on it. Consider the following system of 𝑛 linear
equations with unknowns 𝑥1, ..., 𝑥𝑚 :

𝑎1,1𝑥1 + 𝑎1,2𝑥2 + · · · + 𝑎1,𝑚𝑥𝑚 = 𝑦1

𝑎2,1𝑥1 + 𝑎2,2𝑥2 + · · · + 𝑎2,𝑚𝑥𝑚 = 𝑦2
...

𝑎𝑛,1𝑥1 + 𝑎𝑛,2𝑥2 + · · · + 𝑎𝑛,𝑚𝑥𝑚 = 𝑦𝑛

(3)

with 𝑎𝑖, 𝑗 , 𝑦𝑖 given for all 𝑖 = 1, ..., 𝑛 and 𝑗 = 1, ..., 𝑚. It turns out that (3) is equivalent
to solving the problem of finding the column vector x such that

𝐴x = y , (4)

with 𝐴 = (𝑎𝑖, 𝑗 )𝑖=1,...,𝑛, 𝑗=1,...,𝑚 and y = [𝑦1, ..., 𝑦𝑚]𝑇 . Notice that if 𝐴−1 exists, it fol-
lows by multiplying from the left on both sides of (4) that 𝐴−1𝐴x = 𝐼x = x = 𝐴−1y
and thus, x = 𝐴−1y is the solution of (3).

This method of solving systems may feel too complicated or cumbersome to use
over the standard, manual symbolic method at first; but it is interesting to note that
if you changed the values of 𝑦1, ..., 𝑦𝑛 in (3), the new problem does not have to be
solved from scratch again, since one can take advantage of the fact that 𝐴−1 is already
computed and would only need to calculate a single product. So if you had to solve
multiple systems with the same coefficients, you would probably save time by using
the second method.

Another reason for using the secondmethod is that it obtains the solutions (or lack
of thereof) in a finite number of basic arithmetic operations between the coefficients
𝑎𝑖, 𝑗 and the constant terms 𝑦1, ..., 𝑦𝑛 of any system of linear equations. Computers are
not capable of solving equations in symbolic mode like we do, but they are capable of
storing matrices and vectors and performing operations on them very efficiently.10

Now that we understand some matrix operations, we are prepared to take a peek
into some of the important applications that matrices (and linear algebra as a whole)
have in the field of economic science and, in particular, in economic planning.

10See BLAS.
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2.2 Why is linear algebra important to our proposal?

As previously discussed, the system employed by the USSR had at least two major and
unavoidable flaws. The inability to respond to these problems led to a discrediting of
the planned economy that served largely as a bonus for those who advocated the in-
corporation of capitalist-oriented reforms, which only aggravated the problems and
worsened the quality of people’s lives. We are going to try to illustrate how modern
mathematics, in particular matrix theory, provide an answer to both flaws described
and how they serve as a foundation for a planned economy. In this section our aim is
not to deal with socialist planning in all its complexity, but only to illustrate the basic
mathematics that form the foundation for further research.

We will work under certain assumptions, which we will discuss below, in order to
simplify the mathematical treatment. We are aware that a real economy requires tak-
ing into account many more variables, nevertheless, we will give some references and
observations on the treatment of more nuanced cases.

The method below is inspired by, and generalizes the analyses carried out by W.
Leontief, for which he was awarded the Sveriges Riksbank Prize in Economic Sciences
in Memory of Alfred Nobel (Swedish: Sveriges riksbanks pris i ekonomisk vetenskap
till Alfred Nobels minne) in 1973. His method of analysis of the economy, itself in-
spired by François Quesnay, Leon Walras, Karl Marx and the Soviet planning, is called
the “input-output method”, which succinctly consists of using matrix algebra to de-
scribe the intersectoral relationships of an economy in general equilibrium.11 12 Any
reader interested in original sources in which Leontief describes and uses his powerful
method may consult [15], [16] and [17].

Suppose a closed economy (i.e., no flows with any external agent) with 𝑚 different
types of items, the first 𝑛 types of items being production goods, used to produce other
goods (wood, steel, industrial machinery,...etc) and the remaining𝑚−𝑛 types of items
being consumption goods, those that are not used to produce other goods (chocolate
milkshake, medicines, bandages,...etc).13 Let’s assume that:

(a) Each sector produces only one type of good, therefore there are no intrasector
intermediate goods.14

11The notion of general equilibrium means, informally, that supply and demand of all types of prod-
ucts coincide.

12It is interesting to note that W. Leontief worked with market prices, not with magnitudes that are
independent of the sphere of circulation, as we will do below.

13Consumpition goods are those that are not used to produce other goods.
14This assumption is not difficult to remedy, e.g., the reader may refer to [18].

17

https://cibcom.org/


cibcom.org

(b) There is no training or education that workers can acquire, either to do certain
jobs that they would not otherwise be able to do or to maximize their productiv-
ity.15

(c) All production assets have the same life span, which is taken as unitary. Thewear
and tear of heavy machinery, factory infrastructure ... etc. will not be taken into
account.16

(d) All types of goods require the same manufacturing time, which is taken as a unit
of time.17

(e) There are no different production techniques available for each type of good.

While every other assumption has someworkarounds, the last assumption is especially
unrealistic and problematic, you would only have to watch Breaking Bad to know that
you can produce any specific good in different ways. The different techniques could be
chosen based on efficiency by comparing their integrated labor cost (defined below)18
and by the final amount of a good that has to be produced (represented by the final de-
mand) In any case, this crucial question is beyond the scope of this article. The reader
interested in how to deal with this phenomenon can consult [22], [23], [24] where
the issue is succinctly discussed. There are several authors, such as Tomas Härdin and
David Zachariah, who are studying these issues in depth at the present moment.

Let 𝑎 𝑗 ,𝑖 be the amount of units of the type of good 𝑗 19 required to produce a unit of
the type of good 𝑖 20 and ℓ𝑖 the amount of direct labor hours required to assemble one
unit of the type of good 𝑖. Thus, the production of good type 𝑖 is characterized by the
vector [𝑎1,𝑖, ..., 𝑎𝑛,𝑖, ℓ𝑖], which represents the inputs required and the work of assem-
bling those inputs to produce, after a certain (production) period, one unit of good
type 𝑖.The amount of labor that a unit of the good of type 𝑖 embodies is the sum of the
direct labor employed in its production and the labor “‘stored” in the inputs used. We

15The reader interested in addressing this aspect can consult [19, Chapter 2].
16The interested reader can read [20] for more information in this respect. In [19] the (uneven) wear

and tear of machinery is taken into account, it does not pose a great difficulty.
17See [21], where it is briefly discussed. Further analysis on this point will be necessary as it is an

important variable beyond “integrated labor costs” and environmental considerations, which has hardly
been addressed.

18Aperceptive readermay say that a certain technique can bemore efficient than another if the chosen
set of techniques to produce the other types of goods is different, and they would be right.

19The units of 𝑎 𝑗 ,𝑖 are physical units fixed in advance. For example, if the type of good 𝑗 was bread,
we would use the kilo or gram as the unit of reference.

20Once the economy is disaggregated by sectors, 𝑎 𝑗 ,𝑖 =
𝑧 𝑗,𝑖
𝑥𝑖

where 𝑧 𝑗 ,𝑖 is the quantity of goods pro-
duced in sector 𝑗 that are inputs to sector 𝑖 (in a capitalist economy the unit of 𝑧 𝑗 ,𝑖 and the rest of
variables can simply be monetary) and 𝑥𝑖 the total amount of goods produced in sector 𝑖. This would
be a practical way to calculate 𝑎 𝑗 ,𝑖
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will denote this quantity by 𝜆𝑖. We call 𝜆𝑖 integrated labor cost (ILC) of the 𝑖-th good.21
Next we will look at how we can calculate the ILCs of all goods. Let’s start first with
the ILCs of the production goods.

Let’s now take a look at an illustrative example of how this would work in a simple
economy.

2.3 Simplified example of a neanderthal communal economy
Let’s imagine that we belong to a Neanderthal tribe during the Upper Paleolithic era
and we want to plan the economy of our goods: stones, sticks and hunting horns. We
have the following table of material costs for the realization of each activity:

Stone carving Tree felling Deer hunting
Stones 0.10 0.20 0.20
Sticks 0.00 0.10 0.20
Horns 0.01 0.10 0.50

This table tells us that to carve one stone unit, we need 0.10 stone units, 0.00 sticks
units and 0.01 horn units. At first glance this does not seem obvious, for example,
stones to make other stones? Horns, what for? Thinking about it more carefully, to
carve stones you need other already carved stones to hit them together (hard strikers),
and you need horns and sticks as support tools to finish filing the stones (soft strikers).

If we assign indices 1, 2, and 3 to the stone, sticks, and horns respectively, 𝑎1,1 =
0.10, 𝑎2,1 = 0.00, and 𝑎3,1 = 0.01 for the stones; and 𝑎1,3 = 0.20, 𝑎2,3 = 0.20 and
𝑎3,3 = 0.50 for the horns.22 All these values could be stored in a matrix, so we can
perform some calculations with them using tools from linear algebra.

The matrix 𝐴 could be understood as a “recipe” for producing each type of good:23

𝐴 =


0.1 0.2 0.2
0 0.1 0.2

0.01 0.1 0.5

 . (5)

21Many authors, for example Anwar Shaikh in [25] or Pablo Ruiz Nápoles in [26] define this concept
in a different way by including wage compensation to analyze certain phenomena of international trade.
In our text this concept would be equivalent to what they call vertically integrated labor coefficients.

22The 𝑎 𝑗 ,𝑖 will be referred to later as technical coefficients.
23The matrix 𝐴 will later be called “technological matrix”.
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Each column of the matrix can be understood as the resources needed by each “indus-
try”, in other words, the demand in market economies; while each row can be under-
stood as what each sector offers to the others, the supply.

One of the Neanderthals of the tribe wants to construct a communal project: she
wants to make a series of statues representing motherhood and the Mother Goddess.
She claims that she would need 1 stone unit in order to complete the entire project.
The question that arises is: how much of each resource should we produce so that we
have a final production of 1 stone units?

The extra quantity we want to produce is usually referred to as final demand and
can be represented by the final demand vector d, whose components are the final de-
mand 𝑑𝑖 for each type of good, in this case, d = (1, 0, 0)𝑇 , because we want to produce
only one final unit of the first good (stone). If we wanted to produce two stone units
and one unit of horns, the final demand vector would be d = (2, 0, 1)𝑇 .

The quantities of goods we need to produce are an unknown that we need to cal-
culate. This unknown is known as total production, and is represented by the vector
x(𝑖) = (𝑥 (𝑖)1 , 𝑥 (𝑖)2 , 𝑥 (𝑖)3 )𝑇 with 𝑖 being the type of good we want to produce a final24 unit
of (𝑖 = 1 for the case of stone). This vector stores the quantities 𝑥 (𝑖)𝑗 of all goods 𝑗
that are needed to satisfy the final demand of a good 𝑖 within the system of connected
sectors. Beware! These values should not be confused with 𝑎 𝑗𝑖 values, which merely
specify the amount of resources needed to produce a good in a particular sector.

Now that we pose the problem separately for each type of good, how much stone
would we need to produce? Well, that which is needed to “feed” the production of the
interconnected sectors itself plus one unit of stone (to satisfy the final demand):

𝑥 (1)1︸︷︷︸
Total production

= 𝑎11𝑥
(1)
1︸ ︷︷ ︸

Sector 1

+ 𝑎12𝑥
(1)
2︸ ︷︷ ︸

Sector 2

+ 𝑎13𝑥
(1)
3︸ ︷︷ ︸

Sector 3

+ 𝑑1︸︷︷︸
Final demand

. (6)

Before we continue, let’s analyze the terms present in (6). We see that for example
the term 𝑎12𝑥

(1)
2 refers to the amount of stone units needed to produce one sticks unit

multiplied by the amount of sticks units needed to produce that 1 of final stone desired.
In our particular case we have that

𝑥 (1)1 = 0.1𝑥 (1)1 + 0.2𝑥 (1)2 + 0.2𝑥 (1)3 + 1 . (7)

24final refers to the units of goods we will obtain after replacing the goods used in production.
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Analogously we obtain for the sticks and horns the following system of linear equa-
tions:

𝑥 (1)1 = 𝑎11𝑥
(1)
1 + 𝑎12𝑥

(1)
2 + 𝑎13𝑥

(1)
3 + 1 , (8)

𝑥 (1)2 = 𝑎21𝑥
(1)
1 + 𝑎22𝑥

(1)
2 + 𝑎23𝑥

(1)
3 + 0 , (9)

𝑥 (1)3 = 𝑎31𝑥
(1)
1 + 𝑎32𝑥

(1)
2 + 𝑎33𝑥

(1)
3 + 0 . (10)

In our particular case, we have that

𝑥 (1)1 = 0.1𝑥 (1)1 + 0.2𝑥 (1)2 + 0.2𝑥 (1)3 + 1
𝑥 (1)2 = 0𝑥 (1)1 + 0.1𝑥 (1)2 + 0.2𝑥 (1)3 + 0
𝑥 (1)3︸︷︷︸
x(1)

= 0.01𝑥 (1)1 + 0.1𝑥 (1)2 + 0.5𝑥 (1)3︸                             ︷︷                             ︸
𝐴x(1)

+ 0︸︷︷︸
d

.
(11)

Solving this system of linear equations we would obtain the necessary quantities of
each resource to be able to complete the communal project. In matrix form we have
that

x(1) = 𝐴x(1) + d . (12)

Considering themethod described in Section 4.2 for calculating the inverse of amatrix
we have that

(𝐼 − 𝐴)−1 =


1.12 0.31 0.57
0.01 1.16 0.47
0.02 0.24 2.10

 ,
25

and so we finally obtain that

x(1) = (𝐼 − 𝐴)−1d =
©«

1 0 0
0 1 0
0 0 1

 −


0.1 0.2 0.2
0 0.1 0.2

0.01 0.1 0.5


ª®®®¬
−1 

1
0
0

 =
=


0.9 −0.2 −0.2
0 0.9 −0.2

−0.01 −0.1 0.5


−1 

1
0
0

 ≈

1.12 0.31 0.57
0.01 1.16 0.47
0.02 0.24 2.10



1
0
0

 =

1.12
0.01
0.02

 .

where the matrix (𝐼 − 𝐴)−1 is Leontief ’s inverse matrix.

Problem solved! We must have a total production of 1.12 stone units, 0.01 sticks
units and 0.02 horn units to produce a final unit of stone. This result reflects the need

25The more skeptical reader can verify that indeed (𝐼 − 𝐴) (𝐼 − 𝐴)−1 = (𝐼 − 𝐴)−1(𝐼 − 𝐴) = 𝐼 .
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to produce a small amount of sticks and horns for this communal work. But didn’t it
say on the table that no sticks were needed to carve the stone? This is because we need
horns to carve stone and to obtain horns we need to use sticks.

Suppose that to carve one unit of stone requires, on average, one hour of labor,
to cut one sticks unit requires, on average, two hours of labor, and to hunt one unit
of antlers requires, on average, three hours of labor. Then, it would turn out that the
integrated labor cost (ILC) of the type of good 1 (stone) would be (approximately)
1.12 × 1 + 0.01 × 2 + 0.02 × 3 = 1.2 labor hours. So, directly or indirectly, it would
take (approximately) 1.2 labor hours to produce one final unit of stone.

2.4 General treatment for industrial economies

As we said, the above would be an example for a simplified economy, but in reality,
the reasoning does not change that much when scaling up. The same method can be
used to solve the logistical problems of an economy with millions of different items.
Illustrating this, however, can only be done using abstract mathematical notation, so
the reader will have to process some equations in this section. Also, and unlike Leon-
tief, we have divided the development into production goods and consumption goods
for the sake of generality and also to be able to decouple certain operations in differ-
ent systems of equations. This is inspired by the methods employed by M. Morishima
in [27].

2.4.1 Integrated Labor Costs of Producing Goods

We know that in order to produce a good of type 1, 𝑎1,1, ..., 𝑎𝑛,1 units of the produc-
tion goods 𝑖 = 1, ..., 𝑛 respectively are required. These required units also need inputs
in order to be manufactured, and those new inputs will require other inputs, and so
on. We must “follow the input trail” until there are no more indirect inputs to be taken
into account.

Given the interconectedness between themanufacturing industries, it can be sensed
that an increase in one unit of final output of the 1-type good, produces a “multiplica-
tive” or “cascade” effect on the quantity of output goods of all types, even the first type
(e.g., to produce electricity, a minimum quantity of electricity is needed). To obtain
the total quantities of production goods 𝑥 (1)1 , 𝑥 (1)2 , ..., 𝑥 (1)𝑛 that are required to obtain a
final unit of good type 1, after taking all the implications into account, we must solve
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the following system of linear equations:
𝑥 (1)1 = 𝑎1,1𝑥

(1)
1 + 𝑎1,2𝑥

(1)
2 + ... + 𝑎1,𝑛𝑥

(1)
𝑛 + 1

𝑥 (1)2 = 𝑎2,1𝑥
(1)
1 + 𝑎2,2𝑥

(1)
2 + ... + 𝑎2,𝑛𝑥

(1)
𝑛 + 0

...

𝑥 (1)𝑛 = 𝑎𝑛,1𝑥
(1)
1 + 𝑎𝑛,2𝑥

(1)
2 + ... + 𝑎𝑛,𝑛𝑥

(1)
𝑛 + 0

(13)

Once solved, the ILC of the 1-type good is given by

𝜆1 =
𝑛∑
𝑗=1

ℓ 𝑗𝑥
(1)
𝑗 .

Thenotation
∑𝑛

𝑗=1 𝑓 ( 𝑗) represents 𝑓 (1) + 𝑓 (2) + 𝑓 (3) + ...+ 𝑓 (𝑛) with 𝑓 being any
function. That is,

∑𝑛
𝑗=1 𝑓 ( 𝑗) means to sum up all values of the function 𝑓 in consecu-

tive numbers from the lower bound ( 𝑗 = 1) to the upper bound ( 𝑗 = 𝑛). For example,
consider 𝑓 ( 𝑗) = 𝑗 ,

∑3
𝑗=1 𝑓 ( 𝑗) = ∑3

𝑗=1 𝑗 = 1 + 2 + 3 = 6, i.e., the sum of consecutive
numbers from 1 to 3. The symbol

∑
is called the summation.

Considering that producing each of the inputs requires a certain period of time,
the

∑𝑛
𝑗=1 𝑎𝑖, 𝑗𝑥

(1)
𝑗 with 𝑖 = 1, ..., 𝑛 have to be available before the beginning of that

period and the 𝑥 (1)𝑖 with 𝑖 = 1, ..., 𝑛 will be available at the end of that period. In the
actual production of goods, industries use the necessary production goods while at
the end of the period they are replaced. The parts of the final good that remain after
replacement are called final goods. At the present time we have only one unit of the
1-type good as final good. Similarly we proceed with the good of type 2; to obtain
the total quantities of production goods 𝑥 (2)1 , 𝑥 (2)2 , ..., 𝑥 (2)𝑛 that are required to obtain a
final unit of the good type 2. After taking all the implications into account, we must
solve the following system of linear equations:

𝑥 (2)1 = 𝑎1,1𝑥
(2)
1 + 𝑎1,2𝑥

(2)
2 + ... + 𝑎1,𝑛𝑥

(2)
𝑛 + 0

𝑥 (2)2 = 𝑎2,1𝑥
(2)
1 + 𝑎2,2𝑥

(2)
2 + ... + 𝑎2,𝑛𝑥

(2)
𝑛 + 1

...

𝑥 (2)𝑛 = 𝑎𝑛,1𝑥
(2)
1 + 𝑎𝑛,2𝑥

(2)
2 + ... + 𝑎𝑛,𝑛𝑥

(2)
𝑛 + 0

(14)

Once solved, the ILC of the good of type 2 is given by

𝜆2 =
𝑛∑
𝑗=1

ℓ 𝑗𝑥
(2)
𝑗 .

Repeating the process in an analogous way with the other types of production
goods, that is, with those of type 𝑖 being 𝑖 = 3, ..., 𝑛 we obtain 𝑛 systems of equations
that we can write in matrix form as:
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𝑋𝐼 = 𝐴𝐼𝑋𝐼 + 𝐼 (15)

with

𝑋𝐼 =


𝑥 (1)1 𝑥 (2)1 𝑥 (3)1 ... 𝑥 (𝑛)1
𝑥 (1)2 𝑥 (2)2 𝑥 (3)2 ... 𝑥 (𝑛)2
...

...
...

. . .
...

𝑥 (1)𝑛 𝑥 (2)𝑛 𝑥 (3)𝑛 ... 𝑥 (𝑛)𝑛


,

𝐴𝐼 =


𝑎1,1 𝑎1,2 𝑎1,3 ... 𝑎1,𝑛

𝑎2,1 𝑎2,2 𝑎2,3 ... 𝑎2,𝑛
...

...
...

. . .
...

𝑎𝑛,1 𝑎𝑛,2 𝑎𝑛,3 ... 𝑎𝑛,𝑛


.

Once the (final) outputs 𝑥 (𝑖)1 , 𝑥 (𝑖)2 , ..., 𝑥 (𝑖)𝑛 (𝑖-th column of 𝑋𝐼) required to produce one
unit (of final output) of the 𝑖-th type of output good are determined, we can calculate
the ILC of the 𝑖-th good thus

𝜆𝑖 =
𝑛∑
𝑗=1

ℓ 𝑗𝑥
(𝑖)
𝑗 .26 (16)

The matrix 𝐴𝐼 is the technological matrix whose entries are commonly called techni-
cal coefficients and represent how many units are required on average to produce one
unit of each good. Let’s look at the columns of 𝐴𝐼 , which represent the requirements
(inputs) of each type of good.

If we write 𝐿 𝐼 = [ℓ1, ..., ℓ𝑛] and 𝑀𝐼 = [𝜆1, ..., 𝜆𝑛] we have that

𝑀𝐼 = 𝐿 𝐼𝑋𝐼 . (17)

So far we have calculated the ILCs of all the production goods. nowwewill proceed
to calculate the ILCs of the consumption goods.

26In [28] it is proved that this procedure is equivalent to themore intuitive one of solving the following
system of linear equations: 

𝜆1 = 𝑎1,1𝜆1 + 𝑎2,1𝜆2 + ... + 𝑎𝑛,1𝜆𝑛

𝜆2 = 𝑎1,2𝜆1 + 𝑎2,2𝜆2 + ... + 𝑎𝑛,2𝜆𝑛
...

𝜆𝑛 = 𝑎1,𝑛𝜆1 + 𝑎2,𝑛𝜆2 + ... + 𝑎𝑛,𝑛𝜆𝑛.
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2.4.2 Integrated Labor Costs of Consumer Goods

The production of consumer goods can be divided into two stages; in the first stage
the required production goods are manufactured and in the second stage these goods
are combined to obtain the final consumer goods. The amount of production goods
required to produce one unit of consumer good of type 𝑖 (with 𝑖 = 𝑛 + 1, ..., 𝑚)
are 𝑎1,𝑖, ..., 𝑎𝑛,𝑖, for the purpose of replacing these production goods consumed in
the manufacturing process, we need 𝑥 (𝑖)1 , ..., 𝑥 (𝑖)𝑛 units of production goods of type
𝑗 = 1, ..., 𝑛 respectively which are determined by the following system of linear equa-
tions:


𝑥 (𝑖)1 = 𝑎1,1𝑥

(𝑖)
1 + 𝑎1,2𝑥

(𝑖)
2 + ... + 𝑎1,𝑛𝑥

(𝑖)
𝑛 + 𝑎1,𝑖

𝑥 (𝑖)2 = 𝑎2,1𝑥
(𝑖)
1 + 𝑎2,2𝑥

(𝑖)
2 + ... + 𝑎2,𝑛𝑥

(𝑖)
𝑛 + 𝑎2,𝑖

...

𝑥 (𝑖)𝑛 = 𝑎𝑛,1𝑥
(𝑖)
1 + 𝑎𝑛,2𝑥

(𝑖)
2 + ... + 𝑎𝑛,𝑛𝑥

(𝑖)
𝑛 + 𝑎𝑛,𝑖

(18)

In the first stage society consumes
∑𝑛

𝑗=1 ℓ 𝑗𝑥
(𝑖)
𝑗 hours of labor, while in the second stage

society consumes ℓ𝑖 hours of labor. Therefore, the ILC of the consumption good of
type 𝑖 is

∑𝑛
𝑗=1 ℓ 𝑗𝑥

(𝑖)
𝑗 + ℓ𝑖.27 Here, we have performed the procedure for an arbitrary

𝑖 = 𝑛+1, ..., 𝑚 type of good. Putting the equations we have obtained so far intomatrix
form we get:

𝑋𝐼 𝐼 = 𝐴𝐼𝑋𝐼 𝐼 + 𝐴𝐼 𝐼 , (20)
𝑀𝐼 𝐼 = 𝐿 𝐼𝑋𝐼 𝐼 + 𝐿 𝐼 𝐼 , (21)

being

𝑋𝐼 𝐼 =


𝑥 (𝑛+1)

1 𝑥 (𝑛+2)
1 𝑥 (𝑛+3)

1 ... 𝑥 (𝑚)
1

...
...

...
. . .

...

𝑥 (𝑛+1)
𝑛 𝑥 (𝑛+2)

𝑛 𝑥 (𝑛+3)
𝑛 ... 𝑥 (𝑚)

𝑛

 ,

27In [28] it is proved that this procedure is equivalent to themore intuitive one of solving the following
system of linear equations;


𝜆𝑛+1 = 𝑎1,𝑛+1𝜆1 + 𝑎2,𝑛+1𝜆2 + ... + 𝑎𝑛,𝑛+1𝜆𝑛

𝜆𝑛+2 = 𝑎1,𝑛+2𝜆1 + 𝑎2,𝑛+2𝜆2 + ... + 𝑎𝑛,𝑛+2𝜆𝑛
...

𝜆𝑚 = 𝑎1,𝑚𝜆1 + 𝑎2,𝑚𝜆2 + ... + 𝑎𝑛,𝑚𝜆𝑛

(19)
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𝐴𝐼 𝐼 =


𝑎1,𝑛+1 𝑎1,𝑛+2 ... 𝑎1,𝑚

𝑎2,𝑛+1 𝑎2,𝑛+2 ... 𝑎2,𝑚
...

...
. . .

...

𝑎𝑛,𝑛+1 𝑎𝑛,𝑛+2 ... 𝑎𝑛,𝑚


and 𝑀𝐼 𝐼 = [𝜆𝑛+1, ..., 𝜆𝑚], 𝐿 𝐼 𝐼 = [ℓ𝑛+1, ..., ℓ𝑚]. We note that 𝑋𝐼 𝐼 is a matrix with 𝑛
rows and 𝑚 − 𝑛 columns.

Now, if instead of wishing to produce a final unit of the 𝑖−th production good, we
wish to produce 𝑑𝑖 final units of the 𝑖−th type of good with 𝑖 = 1, ..., 𝑛 then we need
𝑥1, ..., 𝑥𝑛 units of each type of production good respectively, which are determined by

x︸︷︷︸
Total output

= 𝐴𝐼x︸︷︷︸
Intermediate consumption

+ 𝑑︸︷︷︸
Final output

⇐⇒ (𝐼 − 𝐴𝐼)x = d ,

with

x =


𝑥1

𝑥2
...

𝑥𝑛


, d =


𝑑1

𝑑2
...

𝑑𝑛


Therefore, if (𝐼 − 𝐴𝐼)−1 exists (this matrix is called Leontief ’s Inverse Matrix),28 29 then

𝑥 = (𝐼 − 𝐴𝐼)−1d .

If instead of wishing to produce a final unit of the 𝑖−th consumption good, we wish
to produce 𝑑𝑖 final units of the 𝑖-th type of good with 𝑖 = 𝑛 + 1, ..., 𝑚 then we need
𝑥1, ..., 𝑥𝑛 units of each type of production good respectively, which are determined by

x = 𝐴𝐼𝑥 + 𝐴𝐼 𝐼d ⇐⇒ (𝐼 − 𝐴𝐼)x = 𝐴𝐼 𝐼d
28Investigation on sufficient conditions for the existence of (𝐼 − 𝐴𝐼 )−1 such that the vector 𝑥 = (𝐼 −

𝐴𝐼 )−1𝑑 has all nonnegative entries is beyond the scope of the article, the reader interested in questions
related to the above problems may consult [28, Chapter 2] and [27].

29Under certain technical conditions (the reader may consult, for example, [29, p.351]) on 𝐴𝐼 , which
are generally satisfied in an economy, it follows that (𝐼 − 𝐴𝐼 )−1 = 𝐼 + 𝐴𝐼 + ... + 𝐴𝑞

𝐼 + 𝐴𝑞+1
𝐼 + ... (a

limit would appear here but defining it rigorously escapes the purpose of the article, instead, the reader
may interpret it as an ’infinite sum’). In fact, if 𝐴𝑞+1

𝐼 = 0 then (𝐼 − 𝐴𝐼 )−1 = 𝐼 + 𝐴𝐼 + ... + 𝐴𝑞
𝐼 . These

equalities are really interesting, beyond giving us alternative ways to calculate (𝐼 − 𝐴𝐼 )−1 they allow us
to give a precise economic sense to the Leontief Inverse Matrix. It suffices to understand that 𝐴𝐼x are
the inputs required to produce 𝑥𝑖 units of the type of good 𝑖 with 𝑖 = 1, ..., 𝑛, 𝐴2

𝐼x are the inputs required
to produce the inputs required to produce 𝑥𝑖 units of the type of good 𝑖 with 𝑖 = 1, ..., 𝑛 and so on then
x = (𝐼 − 𝐴𝐼 )−1d.
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being

x =


𝑥1

𝑥2
...

𝑥𝑛


, d =


𝑑𝑛+1

𝑑𝑛+2
...

𝑑𝑚


.

Therefore, if (𝐼 − 𝐴𝐼)−1 exists, then x = (𝐼 − 𝐴𝐼)−1𝐴𝐼 𝐼d.

Now we can clearly see the basic strategy of our economic planning. Having fixed
the vector 𝑑, which represents the final quantity of goods of each type that we wish
to produce, we calculate how many units in total of each type of production good, 𝑥,
we need to manufacture. Thus, we can avoid the two major problems of the Soviet
Union described previously in the Introduction, without the need to use a monetary
unit to describe labor flows.3031 Of course, estimating 𝑑 poses a challenge as well,
although much less of a challenge than it might seem at first glance, and even more so
with today’s technology, which allows us to have real-timemechanisms for information
feedback. This problem is discussed extensively in [19].

30Although obtaining the inverse of large matrices is a relatively costly process (since the number of
operations does not grow linearly with the number of rows, as we prove in Section 4) the reader should
have into account that:

1. The matrices 𝐴𝐼 and 𝐴𝐼 𝐼 are not just any matrices. On the one hand, their size depends on
the level at which the economy is disaggregated into types of items (or sectors). On the other
hand, the more it is disaggregated, the sparser the matrices become (i.e., there are more entries
in the matrix that are null). Sparse matrices are very special because they are highly manageable.
Furthermore, the total type of goods in a real economy will always be considerable less than the
total population.

2. We do not need to calculate anything exactly. We only need iterative methods that provide ap-
proximate solutionswith the desired precision. The are ofmathematics that is responsible for this
is called Numerical Analysis and it has been one of the most fruitful areas of applied mathemat-
ics in the last century, even more so with the development of computing. The reader interested
in this type of tools can consult [30–34].

31If personal consumption items in public stores were to be purchased against their equivalent ILC
in labor tokens, the problem described in Appendix A would disappear.
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3 Optimization

This would answer many of the doubts about the functioning of cyber-socialist plan-
ning, but in a complex economy there are more problems to take into account.

Given a particular agro-industrial complex, different ways of approaching the same
problem, task or production objective are always conceivable, eachwith partially or en-
tirely different results. We are referring here to alternative options when it comes to
choosing technologies, workforce distribution, transport and/or delivery routes, etc.
Let us think of an easy example: toiling the land. A priori, one would think that plow-
ing the field with a tractor is more efficient than using hand tools. But, if we think
about it more carefully, this dichotomy is not realistic. Tractors don’t just fall out of
the sky. They also have to be produced, and one could think of scenarios in which it
would be unreasonable to start assembling tractors. This example is as simple as it gets,
but with a little imagination, it is not difficult to realize that many of the challenges of
this century will involve situations of this kind: how do we make the transition to a
post-carbon economy? Do we invest millions and millions of man-hours in an exper-
imental energy that, after a few years, could solve the energy problem for centuries, or
do we play it safe and simply combine, as best as we can, the existing ones?32

In any case, these problems can be summarized as the attempt tomaximize ormin-
imize certain quantities under certain constraints. Among other things, one could try
to minimize the number of working hours required in a dangerous and/or unpleasant
sector or the amount of CO2 emitted to produce a certain product. Well, thanks to the
contributions of the economist and mathematician Leonid Kantoróvich,33 we know
that most of these problems can be modeled mathematically in what are known as op-
timization problems. Formalizing and solving these, taking into account the available
resources, gives us clear indications of how to update our economy efficiently.

Let us recall what was said in section 1. In the market ecosystem, social needs
are eclipsed by the mediation of the imperative of profitability; these needs are inter-
preted as opportunities for profit, subordinating all technical innovations of our col-
lective knowledge to this end. This dynamic is tremendously arbitrary and gives rise to
endless problems (overproduction of unnecessary but profitable products, shortage of
other necessary but unprofitable ones, crises, etc.), but.... isn’t there another way of do-
ing things? Isn’t it intuitive that the optimization mechanisms used today by Amazon

32This is not to be confused with the problem, mentioned in the previous chapter, of calculating the
integrated labour cost of a good that is being produced simultaneously in different ways. The question
now is to select, among a variety of possible initiatives, the best one.

33Kantoróvich was also awarded the Bank of Sweden’s Alfred Nobel Memorial Prize in Economic
Sciences for this topic in 1975.
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or Walmart,34 on an intra-company scale, could be used for emancipatory purposes,
even more efficiently, by socializing all companies and abolishing the enormous con-
straint of hiding information from each other?

In this chapter we will see just that: how mathematical optimization could be used
in a democratically planned economy to ensure the highest possible performance of
our infrastructures. As explained elsewhere [36] [37], this does not imply that all our
public enterprises have to use the same productive techniques. There is enormous
room for innovation and experimentation, but this is a topic beyond the scope of this
article. Let us now focus on the idea of optimization.

3.1 Mathematical Optimization
Thefirst step inmodeling an optimization problem is to define the objective function to
maximize or minimize. Put mathematically, we need to find a function 𝑓 : A → R,
where R is the set of real numbers (any number) and A is normally a subset of the
𝑛-dimensional Euclidean space R𝑛. The latter may sound a bit complex, but it can be
easily understood with an example. We are all used to 3 dimensions in our everyday
life (width, height and length). Or even 4 dimensions! If we have heard of Albert Ein-
stein... Well, these 3 dimensions represent a Euclidean space R3. On the other hand,
A is a subset of this space, i.e., all elements of A belong to R3, so graphically it would
be a bounded portion of it. For example, a sphere would be a subset of the Euclidean
space R3.

Finally, all that remains is to extend the mathematics used for R3 to 𝑛 dimensions.
The points inR3 are defined by 3-coordinates, i.e., they are nothing but ordered triplets
(3-tuples) of real numbers. Analogously, the points in R𝑛 are nothing but 𝑛−tuples of
real numbers, i.e., each point in R𝑛 is defined by 𝑛 ordered numbers. Hopefully, this
will sound familiar to the reader, as the elements of R𝑛 are exactly the row or column
vectors with 𝑛 columns or 𝑛 rows respectively introduced in Section 2.

This last step is simple but hard to imagine, since no one has ever been able to ob-
serve an object in more than 3 dimensions. However, in mathematics it is perfectly
possible. In economics, the 𝑛 dimensions have a more tangible meaning, since they
refer to the 𝑛 types of products whose production is to be optimized, for example, by
representing the units of each type of item to be used in a certain task.

The subsetA will be defined by the restrictions of the problem. Formally, the points
of A will be 𝑛−tuples of numbers that will verify certain inequalities and/or equali-
ties. For example, these constraints may come from limitations on the total number

34You can read about the use of these techniques in these corporations in Chapter 4 [35].
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of working days employed or the total number of tons of 𝐶𝑂2 generated.

At this point, we already know all the ingredients needed to describe an optimiza-
tion problem, i.e., the objective function and the constraints. Optimization is a very
broad branch ofmathematics, which involves amyriad of different techniques depend-
ing on the specific characteristics of the problem to be solved. In this article we focus
on linear programming. As its name indicates, it refers to those optimization problems
composed only of linear functions. Section 3.2 presents in detail the description and
application of linear programming to economic problems. However, certain aspects
of the economy, such as economies of scale, cannot be dealt with by linear program-
ming, because either the objective function is not linear or the relationships defining
the constraints are not linear. This aspect is discussed in more detail in Section 3.3.

3.2 Linear Programming
Linear relationships between variables are relationships that conserve proportions.
Consequently, a linear function 𝑓 defined onR𝑛 sends linear combinations of the vec-
tors 𝑥, 𝑦 into linear combinations of 𝑓 (𝑥), 𝑓 (𝑦), with the same proportionality con-
stants, formally, we will say that 𝑓 : R𝑛 → R𝑚 is linear if

𝑓 (𝛼𝑥 + 𝛽𝑦) = 𝛼 𝑓 (𝑥) + 𝛽 𝑓 (𝑦)

for all 𝛼, 𝛽 ∈ R and for each 𝑥, 𝑦 in R𝑛. The appearance that these functions have is,
for example, that of a straight line in the plane or that of a plane in R3. These types of
functions are very tractable by computers and have interesting properties.

Linear programming problems are usually represented in the literature with the
following notation:

max
𝑥

c𝑇x (22)

subject to: 𝐴x≤ b
x≥ 0

where c𝑇 is a row vector 1 × 𝑛, x is a column vector 𝑛 × 1, A a matrix 𝑚 × 𝑛 and 0 is a
column vector 𝑛 × 1 whose elements are only 0’s.

The previous problem tries to maximize the (linear) function x → c𝑇x subject to
certain restrictions that we will explain below.35 The two apparent constraints, being

35As we stated in 6 every linear application can be represented by a function of the form x → 𝐴x
being 𝐴 a certain matrix. Therefore, in the above problem the objective function can be any linear
function
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expressed in matrix notation, actually correspond to multiple individual constraints.
Therefore, we find it convenient to use the matrix notation in this type of problems.

As we saw in section 2, when the concept ofmatrix-vector product was introduced,
𝐴x ≤ bwould represent𝑚 inequalities, since thematrix 𝐴 has dimensions𝑚×𝑛where
𝑛 is the number of variables in our problem. The 𝑚 constraints can refer, for exam-
ple, to different inputs in a manufacturing process, hours worked, machinery used....
What we need to keep in mind is that constraints will always have a meaning in the
real world. The second constraint is quite common and ensures that the variables in x
do not take negative values to avoid solutions that do not make sense in the real world,
such as producing a negative number of vehicles.

Let us now try to solve a concrete problem with the tools we have so far. It seems
that in the latest plebiscite on the de-carbonization of the economy, citizens have cho-
sen to give more importance to the bicycle as a means of transportation. Unlike in a
capitalist economy, it is not necessary to wait for supply and demand adjustments or
for some capitalist to detect a market opportunity, but the result of the plebiscite can
be implemented directly in the entire bicycle sector.

Given a bicycle factory that produces mountain bikes (𝑥1) and electric bikes (𝑥2),
the objective is for the factory to maximize its production taking into account that the
purchases of electric bikes are expected to be twice as high as those of mountain bikes,
since the former are much more comfortable for commuting long distances to work.
These types of preferences can be reflected in the objective function using the vector
c𝑇 = [1 2], resulting in the objective function 𝑓 (x) = c𝑇x = 𝑥1+2𝑥2. In other words,
electric bicycles have a higher weight in the function and will therefore be prioritized
in production.

Theweekly inputs to the factory are 60kg of steel and 180kg of aluminum. The pro-
duction of each mountain bike requires 1kg of steel and 4kg of aluminum, while the
electric bikes require 2kg of steel and 2kg of aluminum. This results in the constraints
for steel (equation (23)) and aluminum (equation (24)), since production can never
exceed the raw materials needed in their manufacture. Finally, the working hours re-
quired for each bicycle must be considered. The factory consists of 4 employees work-
ing 35h per week each and each of them takes 3 hours to finish a mountain bike and 4
hours for an electric one (equation (25)).

1𝑥1 + 2𝑥2 ≤ 60 (23)

4𝑥1 + 2𝑥2 ≤ 180 (24)
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3𝑥1 + 4𝑥2 ≤ 140 (25)

Equation 26 shows the constraints in matrix form. Note that the last two rows of the
matrix 𝐴 and the vector b ensure that the number of bicycles is not negative.

𝐴x =



1 2
4 2
3 4
−1 0
0 −1


[
𝑥1

𝑥2

]
≤ b =



60
180
140
0
0


(26)

The feasible region is shown in Figure 3, where the shaded areas represent the space
in which the constraints are not satisfied. Between the intersections of all the con-
straints, there remains a polyhedron (white region in the figure) such that any point
within this polyhedron satisfies all the constraints. It can be shown that the point that
maximizes (or minimizes) the objective function must be one of the vertices of this
polyhedron, so that any algorithm that seeks to find the maximum (or minimum) of
the objective function, must evaluate it in all or some of these vertices to solve the
problem. One of the best known algorithms that solve this problem is the “simplex”
algorithm.

3.2.1 The simplex method and its applications

In the following, we will state, intuitively and without going into the details of the cal-
culation, the modus operandi of the simplex algorithm, the method commonly used to
solve linear programming problems.

To understand it, it is enough to know two characteristics of the problem: one re-
lated to the constraints and the other to the objective functions.

The first is the specific shape of the feasible region in which the solutions meet
the requirements imposed by the constraints. This is a convex polyhedron (a cube
or a dodecahedron are two examples, although feasible regions need not be only 3-
dimensional nor be regular).36

36Before proceeding, please remember that, mathematically, a set is convex if and only if, for any two
points of the set we take, the segment joining them is contained in said set.
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Figure 3: The feasible region of the optimization problem is a polyhedron. The differ-
ent colored planes correspond to the constraints of steel (blue), aluminum (orange),
working hours (green) and non-negativity of the solution (red and violet), respectively.

(𝐴) (𝐵)

Figure 4: Visual example of a non-convex set (A) and a convex set (B).

The second feature of the problem is that the objective function, being also a linear
function, orders the space of solutions by dividing them into lines, planes or hyper-
planes (i.e., the extension of the concept for more than 3 dimensions) in which the
function has the same value (see figure 6).

With this inmind, the idea is tomake the objective function increase (or decrease).
To do this we wouldmove up (or down) in the direction perpendicular to these planes.
These two results together lead us to the following conclusion: the optimal solutions
can only be at one vertex or at several ones (along with the points between them: an
edge or a face of the polyhedron). This can be pictured in 3D by resting a polyhedron
on a table either on one point or more, and looking for the highest point: intuitively
we see that it will indeed be a vertex (or more).
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ℎ(𝛼)

Figure 5: Visual example of the possible maxima of a simple convex polyhedron
(square) where ℎ(𝛼) is the height as a function of the angle of inclination. The highest
points are either a vertex or an edge.

As we are interested in finding an optimal feasible solution, we do not care if there
are several more, the crucial part is to arrive at one of them. What makes the previous
result important is that our optimum is going to be in some vertex. With this condition
in mind, an algorithm was designed that uses this result: the simplex method. That
proceeds in three phases: 1. initialization, 2. loop and 3. finalization.

1. The algorithm is initialized by taking any vertex. From there, we analyze its ad-
jacent vertices (connected to it by an edge) and calculate in which of them the
objective function has a larger value (if we are maximizing).

2. Then, we move to that new vertex and repeat the process. By always increasing
the value of the objective function we will eventually reach the optimal vertex.

3. This is confirmed by verifying that its adjacent vertices have a lower value for the
objective function. There, the simplex ends having reached the optimal feasible
solution.

Oncewe know the simplexmethod, we can apply it to the above problem for the op-
timization of bicyclemanufacturing to obtain the solution of the problem. The vertices
of the polyhedron that conforms the feasible region are marked as red dots in Figure 3.
These vertices are the points at which the planes forming the constraints intersect. For
example, to obtain the cut point of the constraints 𝑥1 ≥ 0 and 1𝑥1 + 2𝑥2 ≤ 60 it is only
necessary to solve the system of equations formed by the two constraints. In other
words, we substitute 𝑥1 = 0 of the first constraint in the equation 1𝑥1 + 2𝑥2 = 60 to
obtain the cut-off point (𝑥1, 𝑥2) = (0, 30). Proceeding in a similar way with the rest
of the constraints, the list of vertices [(0, 0), (0, 30), (20, 20), (44, 2), (45, 0)] is ob-
tained.

The reader need only substitute each of these points into the objective function
𝑥1 + 2𝑥2 to find its maximum, which in this case is 60. It is interesting to note that
this maximum could be reached in two different vertices (i.e., for (𝑥1, 𝑥2) = (0, 30)
and (𝑥1, 𝑥2) = (20, 20)). In principle, either would be a valid solution to our problem
and the final decision could be made, for example, randomly (e.g., by flipping a coin)
or based on coordination at the sectoral scale (it could happen that the demand for
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mountain bikes wouldn’t be met if 𝑥1 = 0 were chosen).
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Figure 6: Values of the objective function in the feasible region, represented by the area
bounded by the red lines. Note that the function has a constant value on the shaded
lines inside the polygon (lower value violet, higher value yellow).

For the reader interested in the formalism upon which this algorithm rests, we rec-
ommend consulting the corresponding bibliography [38].

Let us see, with a series of examples, how versatile linear optimization is. To do so,
we will see that a great variety of problems - in our case economic ones - are in fact
linear programming problems in one form or another, and are therefore solvable by
methods such as the simplex described previously.

3.2.2 Historical example from the Plywood Trust Central Laboratory

We will discuss an example that is, in fact, based on a real problem that the Plywood
Trust Central Laboratory presented to L. Kantorovich in 1939 (described in [39]).

The problem was to maximize the production of different types of wood in certain
proportions by making use of certain machines. They had 8 machines to produce
lumber and 5 different types of lumber. The request was to ensure that 10%, 12%, 28%,
36% and 14% of the final product would be of the first, second, third, fourth and fifth
types of wood respectively. Let 𝑝𝑘 be the proportion of wood of type 𝑘 required to be
produced, in our case: 𝑝1 = 0, 1, 𝑝2 = 0, 12, 𝑝3 = 0, 28, 𝑝4 = 0, 36 y 𝑝5 = 0, 14. Let
us denote by 𝛼𝑖,𝑘 the number of units of wood of type 𝑘 that are produced in a working
day using machine 𝑖 and by ℎ𝑖,𝑘 the time, expressed as a fraction of the working day,
that we are going to use machine 𝑖 to produce wood of type 𝑘 . The 𝛼𝑖,𝑘 are data known
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to the Central Laboratory, that represent the productivity of themachines at producing
the different types of wood. These data were specifically as follows:

Machine
number

Kind of lumber
1 2 3 4 5

1 4,0 7,0 8,5 13,0 16,5
2 4,5 7,8 9,7 13,7 17,5
3 5,0 8,0 10,0 14,8 18,0
4 4,0 7,0 9,0 13,5 17,0
5 3,5 6,5 8,5 12,7 16,0
6 3,0 6,0 8,0 13,5 15,0
7 4,0 6,0 9,0 14,0 17,0
8 5,0 7,0 10,0 14,8 18,0

Table 2: The 𝛼𝑖,𝑘 with 𝑖 = 1, 2, 3, 4, 5, 6, 7, 8 and 𝑘 = 1, 2, 3, 4, 5.

The problem consists in obtaining the ℎ𝑖,𝑘 with 𝑖 = 1, ..., 8 and 𝑘 = 1, ..., 5 that
verify the following conditions:

1. ℎ𝑖,𝑘 ≥ 0 .37

2.
∑

𝑘=1 ℎ𝑖,𝑘 = 1 .38

3. 1
𝑝1

∑8
𝑖=1 ℎ𝑖,1𝛼𝑖,1 = 1

𝑝2

∑8
𝑖=1 ℎ𝑖,2𝛼𝑖,2 = 1

𝑝3

∑8
𝑖=1 ℎ𝑖,3𝛼𝑖,3 = 1

𝑝4

∑8
𝑖=1 ℎ𝑖,4𝛼𝑖,4 = 1

𝑝5

∑8
𝑖=1 ℎ𝑖,5𝛼𝑖,5

and that this common value is maximum.39

The solution to the above problem, applying the simplex method, is as follows:

37This is obvious but it is important not to obtain solutions with ℎ𝑖,𝑘 < 0, which are meaningless
38Each machine is going to spend the entire working day producing some type of wood
39If we denote by 𝑧𝑘 =

∑8
𝑖=1 ℎ𝑖,𝑘𝛼𝑖,𝑘 the units produced of each type of wood 𝑘 = 1, 2, 3, 4, 5, then

the total units of wood produced (in a working day) are 𝑀 =
∑5

𝑘=1 𝑧𝑘 . We have that the conditions
𝑧𝑘 = 𝑝𝑘𝑀 for all 𝑘 = 1, 2, 3, 4, 5 are equivalent with the first conditions of 3. To see this, it suffices to
note that 𝑝1 + 𝑝2 + 𝑝3 + 𝑝4 + 𝑝5 = 1, by definition of 𝑝𝑘 , and that

𝑝𝑘𝑀 = 𝑝𝑘 (
𝑝1𝑧1
𝑝1

+ 𝑝2𝑧2
𝑝2

+ 𝑝3𝑧3
𝑝3

+ 𝑝4𝑧4
𝑝4

+ 𝑝5𝑧5
𝑝5

)

= 𝑝𝑘 (𝑝1 + 𝑝2 + 𝑝3 + 𝑝4 + 𝑝5)
𝑧𝑘
𝑝𝑘

= 𝑧𝑘 .

These latter conditions are clearer than those in 3.
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Machine
Number

Kind of lumber
1 2 3 4 5

1 0 0,3321 0 0 0,6679
2 0 0,9129 0,0871 0 0
3 0.5744 0 0,4256 0 0
4 0 0 0,9380 0,0620 0
5 0 0 1 0 0
6 0 0 0 1 0
7 0 0 0 1 0
8 1 0 0 0 0

Table 3: Theoptimal ℎ𝑖,𝑘 , where 𝑖 = 1, 2, . . . , 8 and 𝑘 = 1, 2, . . . , 5 thewewere looking
for.

The optimum total number of units of each type of wood that can be produced in
a workday is

8∑
𝑖=1

ℎ𝑖,1𝛼𝑖,1 = 0, 5744 · 5 + 1 · 5 = 7.872 ,

8∑
𝑖=1

ℎ𝑖,2𝛼𝑖,2 = 0, 3321 · 7 + 0, 9129 · 7, 8 = 9.44532 ,

8∑
𝑖=1

ℎ𝑖,3𝛼𝑖,3 = 0, 0871 · 9, 7 + 0, 4256 · 10 + 0, 9380 · 9, 0 + 1 · 8, 5 = 22, 04287 ,

8∑
𝑖=1

ℎ𝑖,4𝛼𝑖,4 = 0, 0620 · 13, 5 + 1 · 13, 5 + 1 · 14, 0 = 28, 337 and

8∑
𝑖=1

ℎ𝑖,5𝛼𝑖,5 = 0, 6679 · 16, 5 = 11.02035 ,

respectively.

3.2.3 Miscellaneous other possible examples

Now suppose we have 𝑛 machines that are part of the production process of a certain
type of good, composed of 𝑚 parts (in principle there could be repetitions of type of
parts, however, for the sake of simplicity, we will treat each part as a unique type so this
will not pose any problem). Let us denote by 𝛼𝑖,𝑘 the number of parts of type 𝑘 that are
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produced in a working day using machine 𝑖. Let us note that in case machine 𝑖 is not
able to produce parts of type 𝑘 (e.g., a tractor could not produce screws) thenwewould
set 𝛼𝑖,𝑘 = 0. So, what are we looking for? We wish to distribute the work among the
different machines such that the total number of completed items is maximized. Let
us denote by ℎ𝑖,𝑘 the time, expressed as a fraction of the working day, where machine 𝑖
is used to produce parts of type 𝑘 . Our problem is precisely to determine the ℎ𝑖,𝑘 with
𝑖 = 1, ...𝑛, 𝑘 = 1, ..., 𝑚 such that we maximize the final number of finished items. Let
us see what conditions the ℎ𝑖,𝑘 have to verify. It is evident that ℎ𝑖,𝑘 ≥ 0 for all 𝑖, 𝑘 and
that for each 𝑖:

𝑚∑
𝑘=1

ℎ𝑖,𝑘 = 1 .40

If 𝑧𝑘 is the total number of parts of type 𝑘 produced we have that

𝑧𝑘 =
𝑛∑
𝑖=1

𝛼𝑖,𝑘ℎ𝑖,𝑘 ,

since 𝛼𝑖,𝑘ℎ𝑖,𝑘 gives us the total number of parts of type 𝑘 produced using machine 𝑖.
If we wish to obtain complete goods the condition 𝑧1 = 𝑧2 = ... = 𝑧𝑚 must be im-
posed, i.e., the total number of items (necessary to the production of this good) of each
type must be equal. We must maximize the common value, 𝑧, of all these quantities.
Therefore solving the stated problem leads us to solve Problem A: determine ℎ𝑖,𝑘 with
𝑖 = 1, ..., 𝑛, 𝑘 = 1, ..., 𝑚 such that

1. ℎ𝑖,𝑘 ≥ 0 for all 𝑖 = 1, ..., 𝑛, 𝑘 = 1, ..., 𝑚.

2.
∑𝑚

𝑘=1 ℎ𝑖,𝑘 = 1 for every 𝑖 = 1, ..., 𝑛.

3. 𝑧 = 𝑧1 = ... = 𝑧𝑚 and 𝑧 is maximum where 𝑧𝑘 =
∑𝑛

𝑖=1 𝛼𝑖,𝑘ℎ𝑖,𝑘 for all 𝑘 .

The reader can easily write ProblemA in the form (22).41 Other variations of this prob-
lem also fit the structure of Problem A. For example, if we only produced a single type
of part with different machines through different processes and there were different
ways to produce it,42 we would arrive at Problem A. With the difference that 𝛼𝑖,𝑘 , in
this case, would be the number of parts that have gone through the 𝑘−th process using
machine 𝑖 during a working day.

We can also add additional limiting conditions to the original problem, for exam-
ple, if each manufacturing process required a different amount of energy, we might

40We can assume that each machine is going to be used the entire working day, otherwise, the con-
dition would be replaced by

∑𝑚
𝑘=1 ℎ𝑖,𝑘 ≤ 1.

41The problem described in 3.2.2 belongs to this family of problems if we take as “𝛼𝑖,𝑘”
𝛼𝑖,𝑘

𝑝𝑘
being 𝑝𝑘

the proportion of wood of type 𝑘 that is required to be produced.
42For example, making cabinets requires first that we fell trees, then cutting the wood into the right

dimensions, ... etc., and all these processes could be done with different machinery.
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want to limit the total energy expenditure. Let 𝑐𝑖,𝑘 denote the 𝑘𝑊ℎ per day of energy
that manufacturing part type 𝑘 using machine 𝑖 uses up. The total energy expenditure
is given by the expression

∑𝑛
𝑖=1

∑𝑚
𝑘=1 ℎ𝑖,𝑘𝑐𝑖,𝑘 . We can then add to Problem A the con-

straint that the total energy expenditure be less than or equal to 𝐶, for some fixed 𝐶.
Thus, we arrive at Problem B: determine ℎ𝑖,𝑘 with 𝑖 = 1, ..., 𝑛, 𝑘 = 1, ..., 𝑚 such that

1. ℎ𝑖,𝑘 ≥ 0 for all 𝑖 = 1, ..., 𝑛, 𝑘 = 1, ..., 𝑚.

2.
∑𝑚

𝑘=1 ℎ𝑖,𝑘 = 1 for every 𝑖 = 1, ..., 𝑛.

3. 𝑧 = 𝑧1 = ... = 𝑧𝑚 and 𝑧 is maximum being 𝑧𝑘 =
∑𝑛

𝑖=1 𝛼𝑖,𝑘ℎ𝑖,𝑘 for all 𝑘 .

4.
∑𝑛

𝑖=1
∑𝑚

𝑘=1 ℎ𝑖,𝑘𝑐𝑖,𝑘 ≤ 𝐶.

We note that 𝑐𝑖,𝑘 can be replaced by the expenditure of water or labour used in pro-
ducing the 𝑘 type of parts using the 𝑖 machine and thus we can impose constraints on
the total amount of water that can be expended or on the total number of people to be
employed.

Now, suppose that the same machine is able to produce, at the same time, different
parts (or to perform several processes at the same time) and that we can organize the
production process using different production methods. Let 𝜆𝑖,𝑘,𝑙 be the number of
parts of type 𝑘 that are produced under the 𝑙-th production method using machine
𝑖. If ℎ𝑖,𝑙 is the time, expressed as a fraction of the working day, spent using machine
𝑖 for the 𝑙-th production method then the total number of parts of type 𝑘 produced
using all machines, 𝑧𝑘 , will be expressed by 𝑧𝑘 = 𝑠𝑢𝑚𝑖,𝑙𝜆𝑖,𝑘,𝑙ℎ𝑖,𝑙 . The same reasoning
as before leads us to Problem C: determine the ℎ𝑖,𝑙 such that

1. ℎ𝑖,𝑙 ≥ 0 for all 𝑖, 𝑙.

2.
∑𝑚

𝑘=1 ℎ𝑖,𝑙 = 1 for every 𝑖.

3. 𝑧 = 𝑧1 = ... = 𝑧𝑚 and 𝑧 is maximal being 𝑧𝑘 =
∑

𝑖,𝑙 𝜆𝑖,𝑘,𝑙ℎ𝑖,𝑙 for all 𝑘 .

It is even possible to extend the problem even further and expressmany other prob-
lems in the same way, however, we believe that with these examples the reader will
have enough to understand the idea behind its application and how versatile linear
programming is when applied to economic problems of any scale. The reader inter-
ested in expanding on these topics can consult [39] and [40]. With respect to scale, the
solution to the problems we have posed, which basically deal with optimizing the use
of machinery, make a greater difference when applied to larger sectors of the economy.

3.3 Non-linearities
So far we have considered that variations in the economy occur in a linear fashion. This
means that we assume that to produce n times more (or less) quantity of a given prod-
uct x, we will need n times more (or less) inputs. This is the best initial approximation
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Figure 7: Examples of linear (a), and nonlinear (b,c,d) functions. If we understand
them as production functions, the horizontal axis is the amount of inputs and the ver-
tical axis is the amount of outputs.

to the actual macroscopic functioning of economies. However, at a more detailed level
of analysis we will find that certain sectors behave in a markedly different way: we call
these behaviours non-linearities (see figure 7).

There are different types of phenomena that prevent linear behavior: fixed costs,
increasing marginal productivity, decreasing marginal productivity, etc... In addition,
we would include among the non-linearities those economic situations in which in-
teger results are required.43 We include them because we are handling a notion of
linearity in the strictest sense: in linear cases we can reduce or increase the set of in-
puts/outputs by an arbitrary ratio, without having to restrict ourselves to integer out-
comes.

43We’re talking about integer variables, which we’ll comment on in the following section, where we
will clarify both these notions and the distinction with respect to the ”arbitrary ratio”.
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3.3.1 Challenges

To facilitate the intuitive understanding of these challenges, we will present several
concrete examples of these phenomena in real life economies:

• Fixed costs: to visualize them, let us imagine we used a linear model for the case
of gas extraction, such that we would find a ratio of 2 hours to extract 1L of gas
(on average over the whole sector). Considering this, we could conclude that to
extract a total of one liter of gas we would only need two hours of human labor.
However, as soon as we add a bit of realism to the problem, we realize that this
is an absurdity. To extract the first litre of gas we would first have to build huge
extraction and transportation facilities that require thousands of labor hours.
These investments that we need as a basis to carry out certain production pro-
cesses and that do not vary with the quantity produced are what we call ”fixed
costs” and are essential in various sectors.

• Marginal productivities: as examples of increasing and decreasingmarginal pro-
ductivity we have economies and diseconomies of scale. Economies of scale oc-
cur when, as the quantity produced increases, the average costs per unit pro-
duced are reduced (an example is the capitalist conglomerates that use this ad-
vantage in the market). With diseconomies, on the other hand, the opposite
is true. In sectors such as mining or agriculture, the most fertile areas with the
highest output per hour worked are first cultivated, but, as these are used up, less
productive lands are toiled, giving rise to a decreasing marginal productivity. In
these cases, if we wanted to double production, we would have to invest more
than twice as much work.

• Integer variables: an integer variable (. . . ,−2,−1, 0, 1, 2, . . . ) is distinguished
from real variables (0.1,−34.3, 1, 1, . . . ) which we use in linear programming,
in that they have no decimal part. Economic examples of integer variables are
factories or many of the consumer goods that are produced. For planning pur-
poses, we must take them into account so that the plan does not foresee building
one third of a factory at a given site or assigning half a car for such a store, for
example.

Next, we will look at the different strategies used to address these difficulties in
calculating a feasible and approximately optimal plan.

3.3.2 Solutions

Before going into the types of solutions, let us note something about their use. When
having to solve problems beyond the mere linear planning, the computational com-
plexity logically increases, restricting more or less our margin of maneuver [41]. This,
however, does not prevent us from applying these methods at scales lower than the
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directly national one: the exact solutions to the problems posed can be found, in prac-
tice, at other scales such as the sector scale, regional or local.44 There is a rich literature
of more complex but very useful methods that could be applied in such cases, lower-
ing the computational complexity by approximations and ensuring practically feasible
resolutions. Although an in-depth analysis of these methods is beyond the scope of
this introductory article, in the following we briefly describe some examples so that
the reader becomes familiar with them.

Piecewise Linearization

To deal with nonlinear functions (such as increasing or decreasing productivities, for
example) we can “linearize” them. To linearize in mathematics is to choose a linear
function that closely resembles the original, either locally (as in the case of piecewise
linearization) or globally.

An intuitive example would be the model we use for the Earth depending on our
objective. We all know that the Earth is spherical (technically a spheroid) and if we
were to calculate satellite orbits we would be forced to take its sphericity into account.
However, when designing a building or a train network, we assume that the Earth is
flat without taking into account its sphericity, because it makes the calculations much
easier and at this scale its global shape is irrelevant.

To find an approximately optimal plan we can use exactly the same tool, consider-
ing that in each local region of the nonlinear functions there is a linear function that
approximates themwell (piecewise linearization). This tool is used inmany industries;
for example, we could linearize production costs when we have decreasing marginal
costs that have been estimated with some error (we have scattered data, see figure 8).

Non-convex optimization

Non-convex optimization is used precisely when we have increasingmarginal produc-
tivity behaviors (among others) such as those of economy of scale. This gives rise to
non-convex feasible regions where we cannot apply the linear programming methods
we have been using.45

44In addition to the algorithmic approach presented in this paper, it is worth highlighting the treat-
ment of complexity in cybernetics. In the postwar USSR, the modeling of dynamic systems through
continuous feedback gained much relevance precisely in the context of regional and local planning. As
a visible face of this initiative, it is worth mentioning the little-known group of Soviet cyberneticians at
the Novosibirsk Institute of Economics, Siberia [42].

45The concrete mathematical mechanism by which these types of behaviors, in certain sectors, give
rise to non-convex feasible regions involves the second derivatives of their production functions. How-
ever, both this mechanism and its translation into actual economic behaviors are beyond the explana-
tory scope of this paper.
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Figure 8: Example of decreasing marginal costs. We approximate the data by two
straight lines, depending on whether more or less quantity is produced. The shaded
area indicates the confidence interval of the approximation.

However, one tool that can be used to solve this problem is to inscribe a convex
polyhedron 𝑃1 inside the non-convex region 𝑃 so that we can apply the convex pro-
gramming tools there. By obtaining an approximate maximum 𝑥1 inside that region
we can use it to construct a new convex region 𝑃2 that is closer to an optimum of the
non-convex region 𝑥𝑙 (at least a local one) and repeat the same process again (see fig-
ure 9). That way, by recurrence we would end up approaching (with a small margin of
error) an optimum [21] (at least a local one).

In fact, this is how today’s capitalist market unconsciously works: approximating
optima by recurrence. The good news is that in a planned economy, having a global
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Figure 9: Graphs representing the first two iterations of the method
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Figure 10: The blank area represents the feasible region of the linear programming
problem in Section 3.2, while the blue dots represent the feasible region in its integer
counterpart, namely the variables in the bicycle problem must be integer numbers (in-
teger linear programming problem).

overview, we do not have to settle for a local optimum of the non-convex region, but
there are several analysis tools that allow us to find the global optimum of the whole
region 𝑥∗. By having this overview we could save costs and increase the efficiency of
processes where the market is unable to do so because of the way it works.

Mixed integer programming

The problem of integer variables has a solution known as mixed integer programming
(MIP). This is a variation of linear programming with the addition of the restriction
that certain variables must be integer. The restriction makes the problem considerably
more difficult to the point of requiring other algorithms such as the “branch and cut”
method. The reader interested in this type of problems can consult [43]. An example
of a MIP problem is shown in figure 10.

Artificial Intelligence (AI)

Another proposal to deal with non-linearities is transforming the technological matrix
A such that the coefficients are no longer a scalar 𝑎𝑖 𝑗 , but a function 𝑓𝑖 𝑗 (𝑥 𝑗 )able to
model scale economies instead [44]. As a result, the technologicalmatrix𝐹 (x) changes
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depending on the amount of each good 𝑗 to produce.

(𝐼 − 𝐴)x = d −→ (𝐼 − 𝐹 (x))x = d

𝐴 =


𝑎11 𝑎12 · · · 𝑎1𝑛

𝑎21 𝑎22 · · · 𝑎2𝑛
...

...
. . .

...

𝑎𝑛1 𝑎𝑛2 · · · 𝑎𝑛𝑛


−→ 𝐹 (x) =


𝑓11(𝑥1) 𝑓12(𝑥1) · · · 𝑓1𝑛(𝑥1)
𝑓21(𝑥2) 𝑓22(𝑥2) · · · 𝑓2𝑛(𝑥2)

...
...

. . .
...

𝑓𝑛1(𝑥𝑛) 𝑓𝑛2(𝑥𝑛) · · · 𝑓𝑛𝑛(𝑥𝑛)


For this proposal to be feasible for large-scale economic planning, each produc-

tion unit must be able to accurately model the amount of inputs required to produced
each good as a function of the quantity to be produced, thereby making it necessary
to generate a large amount of mathematical models. Thanks to recent advances in
data science and artificial intelligence, such a process could be, up to a certain extent,
automatically done, since the functions 𝑓𝑖 𝑗 could be directly “learnt” based on real pro-
duction data from each of the production units, as proposed by Spyridon Samothrakis
in [45].
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4 Computational complexity
In the previous section, we have seen how useful linear optimization can be to ratio-
nally and efficiently organize an economy without money. However, L. von Mises ar-
gued that thiswas impossible because of the complexity of the calculations involved [46,
47].46 Thepurpose of this section is, on the one hand, to define precisely what is meant
by “complexity of the computations involved”–what we will later call the computa-
tional complexity associated with a certain algorithm–and, on the other hand, to show
the computational complexity of certain algorithms.

When Mises formulated his famous critique of economic planning, the word com-
puter was associated with a job and not with the object used today to connect to the In-
ternet, capable of performing billions of arithmetic operations per second. In the case
of the USSR, a computer could be imagined as a party official sitting in some Gosplan
office performing additions and subtractions at full speed, which entailed two major
limitations: the size of the problem to be solved was very limited and calculation errors
were the norm. However, these limitations have been overcome by today’s computers,
which can perform the same operations without failure and at a speed unimaginable
for a human being. In this latter case, performing economic calculations rationally
will only be possible if enough algorithmic and computing resources are available to
solve linear programming problems in time [48].

4.1 The Concept of Complexity
Computational complexity analysis is a branch of algorithmics that precisely tries to
answer the question of whether a given mathematical problem can be solved under
current technological conditions. The complexity of an algorithm is given by the ra-
tio between the number of simple arithmetic operations and the number of variables
in the problem. For example, counting the number of characters in a sentence (e.g.,
the sentence “Let’s plan!”, which has 11 characters), we only need to iterate over each
character, beginning with the first one, and with each new iteration add 1 to a counter
originally set to 0. Each of these two operations, iterating and adding, are repeated for
each new character, and hence we say that this function has a complexity 𝑛, where 𝑛
is the number of characters in the phrase. To express the complexity of the algorithm
we use what is called the big-O notation, which expresses that the number of opera-

46In his own terms: “It has been argued that in a socialist economy it would be possible to solve
the problem of economic calculation by implementing the equations, considering the description given
by mathematical economics of the conditions of economic equilibrium. [...] [However] Hayek (1935)
estimates the order of magnitude of the number of equations and calculations necessary as hundreds
of thousands. [...] It is clear that the multiplicity of data, and the corresponding establishment of the
equations, is an arduous task beyond central planning. The practical impossibility of carrying out the
proposals related to this or any similar solution is certainly undisputed” [46].
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tions of the algorithm is proportional to, but not exactly, the number of variables in our
problem 𝑛. Therefore, we say that the complexity of counting characters in a sentence
is O(𝑛).

But, why not getting the exact number of operations instead? This can be more
complex than it seems at first glance, as it depends on many different factors, such
as the processor on which the algorithm will be executed, the programming language
used to implement it, how efficient the implementation itself is, etc. Therefore, the
big-O notation provides a good approximation under which to group algorithms ac-
cording to their complexity without taking all these factors into account.

We say that an algorithm is “feasible” or “fast” enough to be executed on current
computers if it belongs to the class of algorithms with complexity P. The P denotes that
these algorithms can be solved in (P)olinomial time; that is, their execution time is
bounded by a polynomial expression of the type O(𝑛𝑘) where 𝑘 is a positive constant.
Within this group, we say that problems of linear complexityO(𝑛) (i.e. 𝑘 = 1) have the
lowest degree of complexity, closely followed by logarithmic complexity O(𝑛 log(𝑛)).
In the next complexity level are the problems with polynomial complexity of order
greater than 1 (i.e. 𝑘 > 1), for example O(𝑛2) or O(𝑛3) for 𝑘 = 2 and 𝑘 = 3, respec-
tively. However, these problems can still be executed fast enough in most computers
nowadays, provided they have enough computational resources.

On the other hand, there are the non-deterministic polynomial time problems
(known as NP problems), which have complexity O(𝑒𝑛).47 We say that this last group
of problems is computationally intractable, since the number of operations grows ex-
ponentially with the number of variables, which would quickly exhaust even the fastest
computer. At first, this division between simple and complex problems may seem a bit
arbitrary, especially when we do not understand exactly what is meant by a logarithm
or the exponential function. However, the reason of the division becomes crystal clear
when comparing the different compelxity functions in the same graph (see Figure 11).

47Euler’s number 𝑒 is approximately 2,718.
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Figure 11: Evolution of the computational complexity as a function of 𝑛.

We can better illustrate the differences between P-type and NP-type problems with
an example. The complexity of multiplying two prime numbers has low complexity
regardless of the size of those numbers (e.g., 1180 · 1233 = 1, 454, 940 and 1 · 2 = 2
involve a “single multiplication” each).48 However, if we propose the inverse problem,
namely finding the two prime numbers that multiplying them yields a certain number,
it may seem like a simple problem on a small scale (e.g., 15 = 3 · 5), but it becomes
extremely complicated as the numbers become slightly larger (e.g., what are the two
prime numbers that yield 8, 003 when multiplied?49 At first glance, the problem of
finding prime numbers may seem uninteresting, but cryptography is based on the dif-
ficulty of solving such problems and thanks to it we can, for example, prevent our data
from being visible to anyone when transmitting them over a WiFi access point.

When looking at Figure 11, it seems obvious that the linear, logarithmic and poly-
nomial O(𝑛2) cases have much lower complexity than the rest. At the other extreme is
exponential complexity, which becomes almost-vertical extremely rapidly. Actually,
the exponential concept is often counter-intuitive because we humans are not used
with dealing with such large magnitudes in a day-to-day basis. Perhaps an example
will give the reader a better idea: the number of atoms in the known universe is esti-
mated to be, in the smallest case, 1080 (a 1 followed by 80 zeros).50 The exponential
function would exceed this value for 𝑛 = 185! In other words, if 𝑛 were the number
of items in an economy, exponential complexity algorithms could not even be used to
plan a household economy. A cunning reader may have noticed that, at first glance,
the polynomial complexity O(𝑛3) would behave similarly, only it grows at a slower
rate. Nothing could be further from the truth! The key to understanding this issue is

48Integer multiplication is, as of 2019, O(𝑛 log 𝑛). See Multiplication algorithms.
49Spoiler alert: 8, 003 = 53 · 151
50https://en.wikipedia.org/wiki/Observable_universe#Matter_content%E2%80%

94number_of_atoms
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at the point 𝑛 = 10, for which the exponential complexity is ten times larger than the
polynomial O(𝑛3). This difference will grow exponentially with every increase of 𝑛
and thus they are not similar at all. The latter type of problems will require more time
to solve, but today’s computers can still do it at such a speed that we can say they are
feasible to run even for large values of 𝑛.

Having presented the different complexity types, how the complexity of a given
algorithm can be obtained remains an open question. This is a fundamental exercise
to understand what the computational complexity really is. Section 2 has introduced
the inverse of the Leontief matrix as a fundamental element for economic planning.
Therefore, the complexity involved in the inversion of a square matrix is an excellent
exercise for understanding the computational complexity in the economic planning
domain. Although it is not themost efficientmethod for inverting amatrix, the Gauss-
Jordan algorithm51 is excellent for illustration purposes and hence will be introduced
in the following section, together with a derivation of its complexity.

4.2 Matrix Inversion: Gauss-Jordan Method
Let’s assume an invertible, squarematrix 𝐴. TheGauss-Jordanmethod consists of find-
ing the “elementary” operations52 that convert the matrix 𝐴 into the identity matrix 𝐼 .
Once they are found, these operations must be applied to the identity matrix 𝐼 in the
exact same order to obtain the inverse matrix 𝐴−1.

𝐴 =


𝑎1,1 𝑎1,2 𝑎1,3

𝑎2,1 𝑎2,2 𝑎2,3

𝑎3,1 𝑎3,2 𝑎3,3


In the following, we present, step by step, the required operations to convert 𝐴 into

𝐼53:

1. Divide row 1 by 𝑎1,1. Operations performed: 3 divisions.

2. Subtract row 1 multiplied by 𝑎2,1 from row 2. Operations performed: 3 multi-
plications and 3 subtractions.

3. Subtract row 1 multiplied by 𝑎3,1 from row 3. Operations performed: 3 multi-
plications and 3 subtractions.

51https://es.wikipedia.org/wiki/Eliminaci%C3%B3n_de_Gauss-Jordan
52These operations consist of adding multiples of another row to a row, multiplying a row by a non-

zero scalar or changing rows of order. Readers interested in finding out more about linear algebra can
consult, for example, [49], [50]. There are hundreds of good textbooks that extensively deal with the
subject.

53We can assume that 𝑎1,1 ≠ 0 since as 𝐴 admits inverse matrix no column of 𝐴 can have all null
entries, therefore, by swapping the order of the rows we can always guarantee it.
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After these first three steps, the matrix 𝐴 has become the matrix 𝐴′, whose first
column is identical to the first column of 𝐼 .

𝐴′ =


1 𝑎′1,2 𝑎′1,3
0 𝑎′2,2 𝑎′2,3
0 𝑎′3,2 𝑎′3,3


4. Divide row 2 by 𝑎′2,2.

54 Operations performed: 2 divisions. (remember that
0

𝑎′2,2
= 0).

5. Subtract row 2 multiplied by 𝑎′3,2 from row 3. Operations performed: 2 multi-
plications and 2 subtractions.

𝐴′ =


1 𝑎′1,2 𝑎′1,3
0 1 𝑎′′2,3
0 0 𝑎′′3,3


6. Divide row 3 by 𝑎′′3,3.

55 Operations performed: 1 division.

𝐴′′ =


1 𝑎′1,2 𝑎′1,3
0 1 𝑎′′2,3
0 0 1


At this point, the diagonal of the matrix already has all its components at 1. Now

it only remains to proceed in the same way, but in the reverse direction.

7. Subtract row 3 multiplied by 𝑎′′2,3 from row 2. Operations performed: 1 multi-
plication and 1 subtraction.

8. Subtract row 3 multiplied by 𝑎′1,3 from row 1. Operations performed: 1 multi-
plication and 1 subtraction.

9. Subtract row 2 multiplied by 𝑎′1,2 from row 1. Operations performed: 1 multi-
plication and 1 subtraction.

54We can assume, again, that 𝑎′2,2 ≠ 0 since no column of the obtained submatrix can have all null
entries.

55We can assume, again, that 𝑎′3,3 ≠ 0 since no column of the obtained submatrix can have all null
entries.
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𝐴′′′ =


1 0 0
0 1 0
0 0 1


After all these operations, 𝐴′′′ = 𝐼 . In total, this process required a total of 28

simple arithmetic operations (6 divisions, 11 multiplications and 11 subtractions).56
However, this is only for the case where 𝐴 is a 3 × 3 matrix. We must generalize the
computation of the operations for an arbitrary 𝑛 × 𝑛 matrix.

4.3 Matrix Inversion: Complexity
TheGauss-Jordanmethod could be viewed as an iterative method in which we operate
on smaller and smallermatrices. Given thematrix 𝑛×𝑛 shown below and starting from
the first pivot (the pivots are the elements in the diagonal of the matrix and they must
become 1), the objective is to make 0 all the elements in its same row and column, and
then perform the same operation with the (𝑛 − 1) × (𝑛 − 1) matrix.

𝑎1,1 𝑎1,2 𝑎1,3 · · · 𝑎1,𝑛
𝑎2,1
𝑎3,1

...
𝑎𝑛,1




(𝑛 − 1) × (𝑛 − 1)

As before, we assume that 𝐴 is invertible57 and consequently we can assume that 𝑎1,1 ≠
0 otherwise we could swap the order of the rows to guarantee it.

In order to make the first pivot 1, it is necessary to perform 𝑛 divisions (divide the
first row by 𝑎1,1). For the first element in each row 𝑖 to become 0, it will be necessary to
perform 𝑛 multiplications (multiply the first row by 𝑎𝑖,1) and 𝑛 subtractions (subtract
the 𝑛 elements of row 𝑖 with those of row 1). This operation must be repeated for each
of the 𝑛 − 1 rows. It only remains to make the last 𝑛 − 1 elements in the first row
0, which can be done by multiplying the pivot in column 𝑗 by 𝑎1, 𝑗 and subtracting
the result from that position in the first row. Therefore, this operation requires 𝑛 − 1
multiplications and 𝑛−1 subtractions. Finally, to obtain the total number of operations

56The row changes in the cases where the ‘pivot’ was null do not imply any change in the computa-
tional complexity of the algorithm.

57Otherwise the goal of the algorithm could not be achieved.
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𝑁 (𝑛), wemust add the operations required for the (𝑛−1)×(𝑛−1)matrix to the number
of operations obtained above,58 resulting in the equation (27).

𝑁 (𝑛) = 𝑁 (𝑛 − 1)︸    ︷︷    ︸
Recursivity

+ 𝑛︸︷︷︸
Divisions to

make the pivot 1

+ 2 · 𝑛 · (𝑛 − 1)︸          ︷︷          ︸
Multiplications and
subtractions to make

the row 0

+ 2 · (𝑛 − 1)︸      ︷︷      ︸
Multiplications and
subtractions to make

the row 0

(27)

The lat two elements in the summation in equation (27) can be combined into a
single term, giving rise to the expression 𝑁 (𝑛) = 𝑁 (𝑛 − 1) + 𝑛 + 2 · (𝑛2 − 1). At this
point, all that remains is to continue the iterative process:

𝑁 (𝑛 − 1) = 𝑁 (𝑛 − 2) + (𝑛 − 1) + 2 · ((𝑛 − 1)2 − 1) . (28)

In the equation above, we have simply started from 𝑁 (𝑛) and substituted 𝑛 for 𝑛 − 1,
thus applying the concept of recursivity. In order to obtain the total number of opera-
tions, we will have to continue for 𝑛 − 2, 𝑛 − 3, etc. until we reach 𝑁 (1) = 1, because
the smallest matrix we will find is the 1 × 1 matrix corresponding to the last pivot,
which only needs one division to become 1. Expressed in mathematical notation, the
complexity of the Gauss-Jordan method will be given by:

C =
𝑛∑

𝑘=1
[𝑘 + 2 · (𝑘2 − 1)] =

𝑛∑
𝑘=1

𝑘 + 2
𝑛∑

𝑘=1
𝑘2 − 2

𝑛∑
𝑘=1

1 . (29)

How do we go from C to O(𝑛3)? Luckily, the equation (29) can be simplified using
a fewmathematical tricks. The first of these is fairly obvious: adding 𝑛 times 1 equals 𝑛.
On the other hand, the first term of C is what is known inmathematics as an arithmetic
progression, which can be simplified in a very original way:

𝑛∑
𝑘=1

𝑘 = 1 + 2 + 3 + · · · + (𝑛 − 2) + (𝑛 − 1) + 𝑛 .

It can also be rewritten in the reverse direction:

𝑛∑
𝑘=1

𝑘 = 𝑛 + (𝑛 − 1) + (𝑛 − 2) + · · · + 3 + 2 + 1 .

Adding both expressions we obtain that 2
∑𝑛

𝑘=1 𝑘 = 𝑛(𝑛 + 1) since there are 𝑛 sums of
the form 𝑗 + (𝑛− 𝑗 + 1) = 𝑛 + 1. The expression for

∑𝑛
𝑘=1 𝑘

2 will be obtained from the
previously deduced formula. On the one hand we have that

𝑛∑
𝑘=1

[(𝑘 + 1)3 − 𝑘3] = (𝑛 + 1)3 − 1 (30)

58When moving to successive pivots, we must always ensure that the pivot is non-zero, which can be
done by swapping rows son long the matrix is invertible. We assume that row swapping does not lead
to changes in the computational complexity.
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and on the other hand it is obtained that
𝑛∑

𝑘=1
[(𝑘 + 1)3 − 𝑘3] =

𝑛∑
𝑘=1

[3𝑘2 + 3𝑘 + 1] = 3
𝑛∑

𝑘=1
𝑘2 + 3

𝑛∑
𝑘=1

𝑘 + 𝑛. (31)

Putting together (30) and (31) we obtain,
𝑛∑

𝑘=1
𝑘2 =

𝑛(𝑛 + 1)(2𝑛 + 1)
6

. (32)

At this point, the complexity of the Gauss-Jordan method can be rewritten as fol-
lows:

C =
𝑛(𝑛 + 1)

2
+ 2 · 𝑛(𝑛 + 1) (2𝑛 + 1)

6
− 2𝑛 =

4𝑛3 + 9𝑛2 − 7𝑛
6

. (33)
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Figure 12: Complexity comparison betweenO(𝑛3) and the exact number of operations
of the Gauss-Jordan method.

We recommend that the reader evaluates the equation (33) at 𝑛 = 3 and checks that
they indeed obtain the same result calculated for thematrix 3×3 in section refsec:method-
gauss-jordan.

At this point, only one step remains to obtain the complexity in large O notation.
For 𝑛 large enough, the element with the largest exponent will dominate in the ob-
tained expression the total complexity (see Figure 12). Therefore, the computational
complexity of the Gauss-Jordan Method is O(𝑛3).

4.4 Complexity and economic planning
Having understood the concept of computational complexity, we are now ready to
ask: could the simplex method be used to plan a modern economy? Different algo-
rithms for the simplex method have been proposed over the last decades, all of them
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with polynomial complexity, as shown in the table 4. The possibility (or impossibility)
of using such algorithms to plan an economy will depend on the final value of 𝑛, the
number of items to be produced.

We can assume that, in a modern economy with high degrees of specialization, the
number of products is proportional to (but probably less than) the number of inhab-
itants, since the production of certain complex products (e.g., vehicles, houses, com-
puters, etc.) requires the work of more than one person. As a result, an upper limit for
the parameter 𝑛 would be, being generous, in the order of 109 for economies as large
as India’s or China’s.

Surprisingly enough, supercomputers using parallel computing on thousands of
processors at the same time were already able to solve problems of such a magnitude
in less than an hour since 2006 [51] using parallel computations of thousands of pro-
cessors.59 Formoremodest problems with 𝑛 on the order of 106, the 4-core processors
of most desktop computers would be sufficient [53].

Author Year Complexity
Khachiyan 1979 O(𝑛6)
Karmarkar 1984 O(𝑛3,5)
Renegar 1988 O(𝑛2,873)
Vaidya 1989 O(𝑛2,5)
Lee y Sidford 2015 O(𝑛2,5)
Cohen, Lee y Song 2020 O(𝑛2,373)

Table 4: Computational complexity of the different algorithms proposed for the sim-
plex method [54].

As we can see, the economic calculation problem in socialism, at least from a tech-
nical point of view, is not unsolvable at all. Both computational complexity analyses
and empirical results show that handling optimization problems of the size of today’s
largest economies is clearly feasible. However, it should be noted that the problem of
economic calculation is not posed only in technical terms, as we have considered so
far, but would also have a purely economic character, related to human evaluation and
decision on the ends and means of productive activity [48, 55]. It is precisely on this

59The latest research in this area has been carried out by Tomas Härdin in [52], where he analyzes
the capabilities of current supercomputers to solve linear problems with sparse matrices (i.e., with most
inputs at 0), since it is expected that the inputs to each of the industries is a small subset of all available
outputs in an economy, giving rise to sparse technology matrices.
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last point where part of the current Austrian critique of the planned economy is fo-
cused and that is why, at Cibcom, we treat this issue as one of the keys to put socialist
planning back in the game.
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5 Conclusions
Most of the problems economic planning faced in the so-called “countries of real so-
cialism” can be solved today thanks to the use of certain modern mathematical and
computational tools. Despite how intricate they may seem at first sight, it is possi-
ble to take a pedagogical approach to them, allowing us to appreciate their practical
implications. The economic problem, summarized in the introduction as “Logistics,
Development, Feasibility”, receives a clear, coherent, and solid answer from the cyber-
communist program.

When it comes to logistics, the intention is to manage logistics issues more pre-
cisely and efficiently than capitalist markets and their mechanisms: disciplinary com-
petition between independent capitals andmonetary profitability as a generalized one-
dimensional incentive. It is proposed that this is done by avoiding the aforementioned
vices of the early Soviet economy, namely, planning the number of goods of each type
by trying to anticipate or predict citizens’ needs. What lessons can we draw from this?
What are the demands that derive from our development?

1. The cost of goodsmust be proportional to the social costs and organically consider
the scarcity of natural resources.

2. Planning must be established in relation to the needs effectively expressed in a
plurality of social instances, forming a feedback system between the Administra-
tion and its different ramifications at different scales.60

3. An alternative universal accounting system is necessary to be able to represent
or homogenize different bundles of goods with a single common unit. If we are
not able to use a non-monetary one, the use of money will prevail, with all the
problems that this entails.

Starting with the latter, cyber-communism contemplates the so-called integrated
labor costs as the only magnitude capable of assuming this function, which entails two
major benefits. The first and most obvious one is that, incorporated into an input/out-
put methodology, they lay the foundations for the elaboration of highly detailed eco-
nomic plans. In order to be able to calculate the ILC, it is necessary to know how may
units of each type of good are needed to produce a unit of any other good. It is thanks
to this that we can carry out our basic planning strategy: to determine from the tech-
nologymatrix the number of units of each type of good thatmust be produced to satisfy
a constantly updated final demand. As we have seen, this requires only the calculation

60As we will try to explain in the future, from cyber-communism, “[direct] democracy is important,
not [only] for moral reasons, but for being able to capture, in detail and in as much quantity as possible,
information about demand, as well as to capture good ideas that are currently ignored by the market
system” [56].
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of the inverse Leontief matrix.

The second benefit is something we did not cover in any great detail: ILCs allow the
establishment of an alternative compensation system to wages as we know them, based
on labor bonds or credits. This makes it possible to purchase certain types of consumer
goods in public stores without the problem of persistent imbalances between effective
supply and demand (described in Appendix A). For more information on this pro-
posal, we recommend reading [10].

In any case, the formula for the success of the cyber-communist organization of
logistics is the socialization of economic activity, an administrative centralization that
allows us to know andmobilize the available resources democratically, overcoming the
informational opacity constitutive of private property.

In any advanced economy with multiple industries and production techniques for
each of the products, it is necessary to employ a resource distribution function among
the different economic tasks. This is what we called the development problem. In cap-
italist societies, this function is carried out by the market, with its disastrous periodic
crises resulting from competition, and by the entrepreneurial function, with the lack
of democratic control of the economy that this implies. Instead, we propose the ex-
propriation of the means of production and their collective management by means of
mathematical optimization tools for the execution of economic decisions. Optimiza-
tion makes it possible to maximize or minimize a certain objective function, such as
the amount of work in a society or the CO2 emitted, taking into account the biophysi-
cal limits of the system (amount of raw materials consumed, available working hours,
etc.). Using this alternative approach, we aim to achieve greater efficiency, since opti-
mal decisions would be made given a certain technological level, and in turn allow a
democratic control over the economy, either through plebiscites or through the pop-
ulation’s consumption reflected in demand.

The basic methodology presented to answer these problems is linear programming,
which consists of optimizing linear functions in a convex polyhedron. As we have
seen, this is incredibly versatile. The family of microeconomic and macroeconomic
problems that can be formalized using linear programming is extensive.

Nevertheless, as one could expect, the jewel in the crown of the cyber-communist
initiative is the promise that all these calculations and operations are computable in a
reasonable time and with sufficient approximation. In other words, that it responds to
the so-called feasibility problem.

The idea that this is impossible, that the problem of economic calculation cannot
be solved democratically, is appreciable in almost all corners of the political spectrum.
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From liberals to market socialists to various forms of social democracy, we find peo-
ple repeating the arguments of the Austrian school. However, the great advances in
recent decades in more efficient optimization algorithms and faster computers seem
to indicate quite the opposite.

It is well known that linear programming is easily tractable with computers using
algorithms such as simplex. In addition, a solution to more specific nonlinear prob-
lems, such as fixed costs, economies and diseconomies of scale or integer variables, can
be found as long as we bound their scale appropriately. For each of these challenges,
there are algorithmic approaches that allow their application in order to maximize the
benefits of the plan: piecewise linearization, non-convex optimization, mixed integer
programming, artificial intelligence, etc.

This article has provided an introduction to computational complexity analysis,
which allows us to systematically analyze the complexity, either in the form of com-
putational resources or computational time, of solving a given algorithm. We believe
that any self-respecting critique of the problem of economic calculation should start
with the tools offered by computational complexity analysis. The studies referenced in
this article show that, given the latest state-of-the-art resources, we are already capa-
ble of solving optimization problems for planetary scale economies, so the supposed
impossibility of economic calculation does not seem to be as such.

For the sake of clarity, this article has oversimplified the development problem, as
show in Section 2.2. For a more realistic and detailed anaysis of this issue, specialists
such as Cockshott, Dapprich or Härdin would better serve as references. However,
we still have a clear political intention: to show, through the clarification of its more
technical edges, the vitality of the communist project, and the foundations on which
it can be built.

Finally, let us underline something that is not always made explicit: you do not
have to be a cybernetic genius to discover the “magic” behind this research program.
The vast majority of us will not have to invent anymathematical techniques or readjust
the computational complexity of any five-year plan. Our initiative to disseminate it in
this depth is intended, first and foremost, to make larger portions of our class aware
of its existence, that we understand how hopeful our proposal is. This is our message
to all of us who feel the shackles of capital: Comrades, there are possibilities for our
long-awaited democracy, that seed that germinated slowly for who knows what future
harvests, and whose sprouts will not take long to burst the earth!
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Appendices
A Why should consumer goods be taxed on the basis of

integrated labour costs?
In this section we reason why the persistent imbalances between supply and demand
in the USSR were no coincidence, but inevitable, due to the lack of proportionality
among taxation, effective demand and integrated labor costs (ILC).

K. Marx considered [57] that economic planning can have no other basis than the
flows of labor time between the different branches of production: “Once collective
production is assumed, the determination of time, as is obvious, becomes essential [...]
Economy of time: this is what every economy finally boils down to. [...] Economy of
time and planned distribution of labor time among the various branches of production
are always the first economic law based on collective production.” Consequently, let us
begin by making explicit the intersectoral relations that represent flows of labor time.
Let us aggregate the economy into three sectors:

(I) The production of means of production.

(II) The production ofmeans of individual consumption that are purchased in public
stores against labor certificates or other remuneration system.

(III) The provision of public services, i.e., individuals do not use labor certificates or
other form of social retribution for work performed to acquire services such as
hospitals and schools.

We will denote the final product (in labor hours) of Sector (I) as production goods
(includes wood, steel, cement, ...etc) and denote by 𝑚, and denote by 𝑀1, 𝑀2, 𝑀3 the
total of production goods used in Sector (I), (II) and (III), respectively. We know that
the production goods wear out, let us assume for simplicity that a 𝑑𝑒𝑙𝑡𝑎 fraction of
them wear out each year. Then, in order to maintain each sector at idle state we need
𝛿𝑀1,𝛿𝑀2, 𝛿𝑀3 labor hours per year, respectively. If 𝑚𝑔 is the final annual growth of
𝑚, we have

𝑚𝑔 = 𝑚 − (𝛿𝑀1 + 𝛿𝑀2 + 𝛿𝑀3) . (34)

Suppose that the total number of people working (denoted by 𝑃) is divided into
𝑃1, 𝑃2, 𝑃3 people working respectively in Sector (I), (II) and (III). Tomake this section
as general as possible, we can assume any system of remuneration which is uniform
and ubiquitous in which the rest of costs are expressed and with which to acquire the
goods of Sector (II), as was the ruble in the USSR, the monetary unit in the USSR.61

61We propose to abolish money and adopt labor certificates as the unit of remuneration, but we refer
to the ruble here in order not to lose generality.
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Once the remuneration system has been fixed, all labor flowsmust be expressed in this
common unit. Otherwise, there is no way of coordinating the different sectors of the
economy, i.e., it becomes the accounting unit on which economic planning is based.

For the sake of simplicity, let us assume that all working days are equal. Let us
denote by 𝑤 the salary of each worker62 in the chosen remuneration system. We will
call 𝑐 the total costs expressed in the chosen accounting unit of 𝑚. Let us denote by
𝐶1, 𝐶2, 𝐶3 the respective accounting costs of each sector. Since each sector has as ex-
penses the production goods worn out and the salaries of the people working there,
we have the following equations

𝐶1 = 𝑐𝛿𝑀1 + 𝑤𝑃1 , (35)

𝐶2 = 𝑐𝛿𝑀2 + 𝑤𝑃2 , (36)

𝐶3 = 𝑐𝛿𝑀3 + 𝑤𝑃3 . (37)

We denote by 𝑏 the final product of Sector (II) (in hours worked) and by 𝑝 the number
of accounting units that 𝑏 represents. For simplicity, we assume that people are not
able to accumulate accounting units at the end of each year, in other words, they do
not save. If 𝑡 is the income tax rate, we have

𝑝𝑏 = 𝑤(𝑃1 + 𝑃2 + 𝑃3) (1 − 𝑡) . (38)

Up to this point, 𝑐 was a variable completely independent of the rest. However, the
correct way to define 𝑐 is by dividing the accounting costs of Sector (I) by the number
of labor hours that the final product of the same sector embodies, formally:

𝑐 = 𝐶1/𝑚. (39)

Thenet accumulation of new production goods and the accounting costs of Sector (III)
is financed via the total collected taxes and the net “profits” of Sector (II)63, i.e., we have

𝑐𝑚𝑔 + 𝐶3 = 𝑡𝑤(𝑃1 + 𝑃2 + 𝑃3) + 𝑝𝑏 − 𝐶2 . (40)

As a result, we have 8 free variables𝑚𝑔, 𝑐, 𝑤, 𝑡, 𝑝, 𝐶1, 𝐶2, 𝐶3 and 7 equations that con-
strain our choices. If government revenues depend exclusively on taxes, then senato-
rial prices must correspond to integrated labor costs. Conversely, if taxes collected by
the government are not sufficient to finance public services (Sector III), then prices of
consumer goods (Sector II) must be higher than integrated labor costs, leading to an
inflationary effect.

62All working hours are remunerated in the same way.
63In capitalism this is not true since the personal consumption of the capitalists must be added
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So farwe have only discussed the inter-sectoral relationships that have to be verified
in any economy, now let us look at the intra-sectoral constraints. Even assuming that
the population remains constant, individual consumption is highly variable. Must the
prices of each of the products in Sector (II) correspond to their respective integrated
labor costs excluding, at most, fluctuations arising from changes in demand patterns?
The answer is yes, otherwise the adjustments that individuals make in their demand
patterns would be incompatible with the a priori allocation of labor power for each
type of item.

Let us look at this with a simple example. Assume that one group of consumer
goods, e.g., tables, are extremely devalued compared to another group of goods, e.g.,
bottles of wine. Let’s say that bottles of wine are priced close to their integrated labor
cost while tables are half the price of their integrated labor cost. Consumers could
switch part of their consumption from wine bottles to tables. Let’s say for example
they decide to reduce their wine bottle consumption by the equivalent of 5 million
labor hours and spend them instead on tables. Given that table prices are equivalent
to half of their integrated labor costs, it would seem that those 5 million labor hours
that go toward consuming tables (instead of wine bottles) could be enough to buy 10
million labor hours of tables. However, even if the workers who in the past produced
those 5 million labor hours of wine bottles were transferred to table production, that
would not be enough to produce the 10 million labor hours demanded in tables. More
generally, if prices are not proportional to integrated labor costs and effective demand,
changes in consumer patterns,64 would imply either a demand too large to be satisfied
with the size of the labor force, or, in the case of switching from one type of good to
an overpriced one, a certain portion of the labor force becoming redundant.

Other problems that could arise from subsidizing products would be, on the one
hand, the creation of black markets since, as mentioned above, there would be short-
ages of products and even hoarding of such products by certain groups, and, on the
other hand, there would be a duality in the prices of subsidized goods, since the real
price of the subsidized goods would be the real price abroad as opposed to the local
price.

One of the problems that the USSR persistently faced was an inevitable conse-
quence of the economic policies implemented. The lesson is very simple to learn: we
must be able to accurately calculate the integrated labor costs of all types of goods and
distribute consumer goods from public stores against the equivalent of their integrated
labor costs in order to successfully coordinate the economy without persistent prob-
lems of shortages and overproduction.

64Namely, when they stop spending the equivalent of a certain number of labor hours on one type of
good to spend it on another type of good.
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